birmaga.ru
добавить свой файл

1
Задание 1:



  1. Отделить корни аналитически.

  2. Отделить корни аналитически и уточнить один из них методом проб с точностью в 0.01

  3. Отделить корни графически.

  4. Отделить корни графически и уточнить один из них методом проб с точностью до 0.01



Задание 2:

  1. Отделить корни уравнения графически и уточнить один из них методом хорд с точностью до 0.01

  2. Отделить корни графически и уточнить один из них методом хорд с точностью 0.01


1) tg(0,3x+0,4)=x^2 2) x^3+4x-6=0
Задание 3:


  1. Комбинированным методом хорд и касательных решить уравнение третьей степени, вычислив корни с точностью до 0.001


1) 2x^3-3x^2-12x+1=0
Задание 4:
1. Определить корни уравнения графически и уточнить один из них методом итерации с точностью до 0.001

2. Определить корни аналитически и уточнить один из них методом итерации с точностью до 0.001
1) x=(x+1)^3; 2) x^3+0,2x^2+0,5x+0,8=0
Задание 5:
1. Вычислить интеграл по формуле трапеции с тремя десятичными знаками.

2. Вычислить интеграл по формуле Симпсона при n=8; оценить погрешность результат, составить таблицу конечных разностей.


Задание 6:
Используя метод Эйлера с уточнением, составить таблицу приближенных значений интеграла дифференциального уравнения y'=f(x,y), удовлетворяющего начальным условиям y(x0)=y0 на отрезке [a,b]; шаг h=0,1. Все вычисления вести с четырьмя десятичными знаками.