birmaga.ru
добавить свой файл

1

Вопрос1 Билет1

Конденса́тор — устройство, предназначенное для получения необходимого значения ёмкости в цепях различных электронных устройств; утройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Конденсатор в цепи постоянного тока не проводит ток, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора. При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

Характеристики конденсаторов

Ёмкость

Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин). Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равнаЭта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Удельная ёмкость


Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение


Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального

Полярность.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Паразитные параметры

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение .Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора.


Транзисторы - трёхэлектродный полупроводниковый электронный прибор, в котором ток в цепи двух электродов управляется третьим электродом. Управление током в выходной цепи осуществляется за счёт изменения входного напряжения. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ). Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник) -транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах.

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, разновидность транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). Схематическое устройство транзистора показано на втором рисунке.



Простейшая наглядная схема устройства транзистора

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.


В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база в область базы. Часть этих электронов соединяется с основными носителями заряда в базе (дырками), часть медленно перетекает обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, из эмиттера, передвигается в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны т.к они не основные носители в базе, поэтому для них переход открыт, и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) . Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

Характеристики транзистора как четырёхполюсника. Схемы включения с общей базой, общим эмиттером и общим коллектором

Схема включения с общей базой


Любая схема включения транзистора характеризуется двумя основными показателями:

  • коэффициент усиления по току Iвых/Iвх.

Для схемы с общей базой Iвых/Iвх=Iк/Iэ=α [α<1])

  • входное сопротивление Rвхб=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Недостатки схемы с общей базой :

  • Схема не усиливает ток, так как α < 1

  • Малое входное сопротивление

  • Два разных источника напряжения для питания.

Достоинства:

  • Хорошие температурные и частотные свойства.

Схема включения с общим эмиттером


Iвых=Iк

Iвх=Iб

Uвх=Uбэ

Uвых=Uкэ

Достоинства:

  • Большой коэффициент усиления по току

  • Большое входное сопротивление

  • Можно обойтись одним источником питания

Недостатки:

  • Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Выходное переменное напряжение инвертируется относительно входного.

Схема с общим коллектором


Iвых=Iэ

Iвх=Iб

Uвх=Uбк

Uвых=Uкэ

Достоинства:

  • Большое входное сопротивление

  • Малое выходное сопротивление

Недостатки:


  • Не усиливает напряжение

Схему с таким включением также называют «эмиттерным повторителем»

Дро́ссель - прибор, представляющий собой катушку индуктивности, обычно с металлическим сердечником, включаемую в цепь последовательно для фильтрации высоких частот в цепи.

Характеристики

Индуктивность


Основным параметром катушки индуктивности является её индуктивность, которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн. Индуктивность катушки пропорциональна линейным размерам катушки, квадрату числа витков намотки и магнитной проницаемости сердечника.

Ток подмагничивания Io

Дроссели фильтров выпрямителей могут иметь одну или две обмотки- основную и компенсационныю. Компенсационная обмотка может при необходимости последовательно соединяться с основной так, чтобы направление их намагничивающих сил совпадали или были направлены встречно. При первом случае индуктивность дросселя увеличивается а при втором уменьшается.

Билет2 вопрос1

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями - состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор - это управляемый диод. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).книга Электротехника и электроника стр124.схемы вкл. Леция12 картинка082.


Вопрос1 Билет7

Выпрямитель - устройство, предназначенное для преобразования переменного напряжения в постоянное. Основное свойство выпрямителя - сохранение направления протекания тока при изменении полярности входного напряжения. По количеству выпрямленных полуволн выпрямители делят на однополупериодные и двухполупериодные. По числу фаз силовой сети различают однофазные, двухфазные, трехфазные и шестифазные выпрямители.

Трехфазный выпрямитель с нулевой точкой обладает значительно меньшими пульсациями выходного напряжения и их утроенной частотой по сравнению с однофазным двухполупериодным выпрямителем. Этой позволяет упростить фильтр а иногда и вообще обойтись без него. Но такой схеме присуще подмагничивание трансформатора постоянным током, что ухудшает его использование.


Трехфазный мостовой выпрямитель (схема Ларионова) по сравнению с предыдущей схемой характеризуется отсутствием подмагничивания трансформатора, еще меньшим коэффициентом пульсаций, и их вдвое большей частотой.

Для схемы Ларионова лекция4 фотка 040


Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.



ФА, ФС, ФВ – напряжения на вторичных обмотках трехфазного трансформатора.

U va Uvb Uvc напряжение на нагрузке получаемое с соответствующего вентиля.

Uн – Суммарное напряжение на нагрузке.

Этот выпрямитель представляет собой мостовые выпрямители для каждой пары трехфазных обмоток, работающие на общую нагрузку. Соединяя в себе достоинства мостового выпрямителя и трехфазного питания, он имеет настолько низкий уровень пульсаций, что позволяет работать почти без сглаживающего конденсатора или с небольшой его емкостью.


Недостатки: Увеличенное количество вентилей. Выпрямитель также не может быть применен для работы в однофазной бытовой сети.

Самое простое и очевидное применение р-п перехода – это использование его в качестве выпрямителя. Но здесь важно отметить, зачем делается выпрямление электрического тока. Прежде всего это выпрямление переменного тока для питания различной аппаратуры постоянным током. Это обычно 50 Гц или 60 Гц – довольно низкая частота. Поэтому быстродействие от этих диодов не требуется, но требуется пропускание довольно большого тока, достигается за счёт большой поверхности р-п перехода. Это так называемые силовые диоды. Выпрямление тока происходит по следующей схеме:

От источника электродвижущей силы ток проходит через диод и затем через сопротивление нагрузки. На сопротивлении нагрузки выделится напряжение, похожее на диаграмму тока, т.е. напряжение будет одного знака, но очень пульсирующим, что недопустимо. Можно, конечно, усложнить схему за счёт использования четырёх диодов, тогда не будет пропусков, но импульсность останется. Поэтому применяют фильтрацию сигнала, в простейшем случае применяют просто конденсатор

Билет7 вопрос2

Дифференциа́льный усили́тельэлектронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу.

Дифференциальный усилитель необходим в случаях, когда информацию несёт не абсолютное значение напряжения в некоторой точке (относительно «земли»), а разность напряжений между двумя точками. Характерным примером является резистивный датчик тока, включенный последовательно с исследуемой цепью.


Следует использовать дифференциальные усилители всегда, когда возможно наличие синфазных помех в сигнале.

На рисунке 2.65 представлена основная схема самого простого дифференциального усилителя. Выходное напряжение измеряется на коллекторе транзистора Т2 относительно потенциала земли (общий провод здесь не изображен). Транзисторы Т1 и Т2 подбираются с возможно близкими параметрами. Принцип действия дифференциального усилителя заключается в том, что он усиливает дифференциальный сигнал и преобразует его в несимметричный сигнал с которыми работают обычные схемы. Достигается это тем, что синфазные сигналы, приходящие на входы 1 и 2 относительно земли в одном из транзисторов вызывают увеличение тока в цепи, а в другом - уменьшение, причем на одну и ту же величину, так что получается, что общий ток не изменится вовсе. Следовательно, на выходе сигнала не будет. Дифференциальный усилитель синфазный сигнал не просто не усиливает, а не пропускает на выход.
      Полезный сигнал, подаваемый на входы дифференциального усилителя должен быть разной полярности. При хорошо подобранных транзисторах в дифференциальном усилителе синфазный сигнал подавляется в десятки тысяч раз, такого же порядка может достигать и общий коэффициент усиления.

Билет 3 вопр1


 Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.


Рис. 1. Условное обозначение IGBT

Рис. 2. Схема соединения транзисторов в единой структуре IGBT

Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор). IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем. Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.


Рис. 3. Диаграмма напряжения и тока управления


Схематичный разрез структуры IGBT показан на рис. 4,а. Биполярный транзистор образован слоями p+ (эмиттер), n (база), p (коллектор); полевой - слоями n (исток), n+ (сток) и металлической пластиной (затвор). Слои p+ и p имеют внешние выводы, включаемые в силовую цепь. Затвор имеет вывод, включаемый в цепь управления. На рис. 4,б изображена структура IGBT IV поколения, выполненого по технологии "утопленного" канала (trench-gate technology), позволяющей исключить сопротивление между p-базами и уменьшить размеры прибора в несколько раз.

  Процесс включения IGBT можно разделить на два этапа: после подачи положительного напряжения между затвором и истоком происходит открытие полевого транзистора (формируется n - канал между истоком и стоком). Движение зарядов из области n в область p приводит к открытию биполярного транзистора и возникновению тока от эмиттера к коллектору. По быстродействию IGBT уступают MOSFET, но значительно превосходят биполярные. Типичные значения времени рассасывания накопленного заряда и спадания тока при выключении IGBT находятся в диапазонах 0,2-0,4 и 0,2-1,5 мкс, соответственно. Область безопасной работы IGBT позволяет успешно обеспечить его надёжную работу без применения дополнительных цепей формирования траектории переключения при частотах от 10 до 20 кГц для модулей с номинальными токами в несколько сотен ампер. IGBT - транзисторы, изготовленные по этой технологии, обладают высокой du /dt стойкостью, практически прямоугольной областью безопасной работы, что обеспечивает надёжную работу приборов при предельных загрузках по току и напряжению. Эти транзисторы имеют положительный температурный коэффициент напряжения насыщения, что позволяет успешно использовать IGBT- модули в параллельных соединениях. Особенностью российских модулей является низкое время спада тока при выключении, а также очень низкие и практически не зависящие от температуры остаточные токи. Это особенно важно при работе транзисторов на высоких частотах. Современные IGBT-модули находят сегодня широкое применение при создании неуправляемых и управляемых выпрямителей, автономных инверторов для питания двигателей постоянного и переменного тока средней мощности.

ПИД-регулятор

[править]

Материал из Википедии — свободной энциклопедии


Перейти к: навигация, поиск





Схема, иллюстрирующая принцип работы ПИД-регулятора

Пропорционально-интегрально-дифференциальный (ПИД) регулятор — устройство в цепи обратной связи, используемое в системах автоматического управления для поддержания заданного значения измеряемого параметра. ПИД-регулятор измеряет отклонение стабилизируемой величины от заданного значения (уставки) и выдаёт управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально этому отклонению, второе пропорционально интегралу отклонения и третье пропорционально производной отклонения (или, что то же самое, производной измеряемой величины).

Если какие-то из составляющих не используются, то регулятор называют пропорционально-интегральным, пропорционально-дифференциальным, пропорциональным и т. п.

Содержание

[убрать]


  • 1 Общие сведения

    • 1.1 Пропорциональная составляющая

    • 1.2 Интегральная составляющая

    • 1.3 Дифференциальная составляющая

  • 2 Теория

  • 3 Ссылки

[править] Общие сведения

[править] Пропорциональная составляющая


Пропорциональная составляющая устраняет непосредственно ошибку в значении стабилизируемой величины, наблюдаемую в данный момент времени. Выходной сигнал пропорциональной составляющей тем больше, чем сильнее регулируемая величина отклоняется от уставки. Если входной сигнал равен уставке, то выходной равен нулю.

При использовании пропорциональнго регулятора значение регулируемой величины никогда не стабилизируется на заданном значении. Существует, так называемая, статическая ошибка, которая равна такому отклонению регулируемой величины, которое обеспечивает выходной сигнал, стабилизирующий выходную величину именно на этом значении. Например, в регуляторе температуры выходной сигнал (мощность нагревателя) постепенно уменьшается при приближении температуры к уставке, и система стабилизируется при мощности равной тепловым потерям. Температура не может достичь уставки, так как в этом случае мощность нагревателя станет равна нулю, и он начнёт остывать.

Чем больше коэффициент пропорциональности между входным и выходным сигналом (коэффициент усиления), тем меньше статическая ошибка, однако при слишком большом коэффициенте усиления могут начаться автоколебанияа при дальнейшем увеличении коэффициента система может потерять устойчивость.

[править] Интегральная составляющая


Для устранения статической ошибки используют интегральную составляющую. Она позволяет регулятору «учиться» на предыдущем опыте. Если система не испытывает внешних возмущений, то через некоторое время регулируемая величина стабилизируется на заданном значении, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечивать интегральная составляющая.

[править] Дифференциальная составляющая


Дифференциальная составляющая противодействует предполагаемым отклонениям регулируемой величины, которые могут произойти в будущем. Эти отклонения могут быть вызваны внешними возмущениями или запаздыванием воздействия регулятора на систему. Чем быстрее регулируемая величина отклоняется от уставки, тем сильнее противодействие, создаваемое дифференциальной составляющей.

[править] Теория


Назначение ПИД-регулятора — в поддержании заданного значения x0 некоторой величины x с помощью изменения другой величины u. Значение x0 называется уставкой, а разность e = (x0 − x) — невязкой или рассогласованием.

Выходной сигнал регулятора u определяется тремя слагаемыми:

,

где Кp, Кi, Кd — коэффициенты усиления пропорциональной, интегральной и дифференциальной составляющих регулятора, соответственно.

Большинство методов настройки ПИД-регуляторов используют несколько иную формулу для выходного сигнала, в которой на пропорциональный коэффициент усиления умножены также интегральная и дифференциальная составляющие:




Часто в качестве параметров ПИД-регулятора используются:


  • относительный диапазон



  • постоянные интегрирования и дифференцирования, имеющие размерность времени




Следует учитывать, что термины используются по-разному в различных источниках и разными производителями регуляторов.