birmaga.ru
добавить свой файл

  1 ... 10 11 12 13 14
Глава пятая. Таинственная простота

У нас постоянно на языке слова:
время и время, времена и времена...
Кажется, нет ничего яснее и обыкновеннее,
а между тем, в сущности,
нет ничего непонятнее и сокровеннее...
Аврелий Августин, IV в. н.э.

...Бытие вне времени есть
такая же величайшая бессмыслица,
как бытие вне пространства.
Ф. Энгельс
Между этими высказываниями пролегли полторы тысячи лет. А сколько тысячелетий назад человек стал задумываться над тем, что есть время? Одно не подлежит сомнению: начав размышлять над этим, человек стал карабкаться на одну из высочайших вершин знания, штурм которой продолжается сейчас и не прекратится в будущем, потому что речь идет о самом важном в философии: пространственно-временном единстве мира. Первобытному человеку, обожествлявшему время, оно казалось бесконечно могущественным - таким, каким показал его Шекспир в "Зимней сказке":
Я - Время. Я вселяю ужас.
Я - добро и зло. Я - счастие и горе...
Нет перемен во мне: таким же было
Я на заре далекой мирозданья;
Я видело начало всех начал, -
При мне круговорот века свершали;
И наши дни я тож покрою пылью...
В процессе познания человеческая мысль пришла к удивительному пространству-времени Эйнштейна и еще более удивительным, но пока еще очень слабо познанным пространствам-временам микромира элементарных частиц и мегамира недр звезд, находящихся в совершенно необычном, сколлапсированном состоянии. И всегда на этом пути реальность подтверждала выводы теории, а теория подталкивала на поиски новых реальностей.
От абсолютного к относительному
Наиболее полную и последовательную попытку оторвать время от материи сделал Ньютон. Он назвал его торжественно и важно: абсолютное, истинное, математическое время, которое "...по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью".

И пространство у него было точно таким же: абсолютным, истинным и пустым, не связанным ни с предметами, в нем находящимися, ни с их изменениями, ни со временем. Оно было как бы рамой для мира реальных вещей, и в этом абсолютном пространстве царило абсолютное движение, измеряемое уже известным нам абсолютным временем. Зачем понадобилось творцу теории всемирного тяготения это пространство? Затем, что без него никак не удавалось справиться с движением.

Еще в древности было подмечено, что в спокойно плывущем по глади реки корабле путешественник не может сказать, движется он или стоит на месте, если не видит берега. Галилей распространил эти наблюдения и на физические опыты. Он писал, что столь же безразличным к движению окажется и камень, "падающий с высоты корабельной мачты; этот камень всегда окончит свое падение, ударив в одно и то же место как в том случае, когда корабль неподвижен, так и в том, когда он идет быстрым ходом... Я... произвел этот опыт; но еще перед тем естественное рассуждение привело меня к твердому убеждению в том, что из него должно получиться именно то, что действительно и получилось". Следовательно, никакими опытами нельзя установить, движемся мы или нет, если движение происходит без ускорения. В этом - суть "принципа относительности" Галилея. Ньютон был вполне согласен с этим принципом. И все-таки ему казалось, что должно быть нечто незыблемое (человек религиозный, он называл пространство "бесконечным чувствилищем бога"), некая основа, опираясь на которую, наблюдатель может ощутить движение без ускорения. Абсолютное пространство и было для Ньютона неподвижной системой отсчета.

Физика XVIII столетия полностью приняла принципы Ньютона и пользовалась ими весьма плодотворно. Единственной деталью, портившей фасад стройного здания, была скорость света. Приходилось считать ее бесконечно большой, ибо в пустом пространстве только такой она и могла быть, а наблюдения этого не подтверждали. В 1675 г. датский астроном Олаус Ремер представил в Парижскую академию наук мемуар "Относительно доказательства движения света". В работе описывались наблюдения за Юпитером и его спутником Ио. Оказывается, в январе Ио появлялась из-за Юпитера на целых 16 минут 36 секунд раньше, чем в июне; разница столь громадна, что ее никак нельзя отнести за счет ошибок измерения. Поскольку в июне Земля и Юпитер находились по разные стороны от Солнца, а в январе - по одну сторону, оставалось предположить, что все дело в конечности скорости света.
Ему требовалось в каждом случае проходить до Земли иное расстояние. Несложное деление - и Ремер получает первую в истории науки величину скорости света: около 280 тыс. километров в секунду, - превосходный результат, особенно если принять во внимание неточность тогдашних часов и другие ошибки.
Ньютон знал о работе Ремера. Он, безусловно, понимал, что конечная величина скорости неизбежно влечет за собой некую среду, передающую движение. Пространство, следовательно, связано с предметами, в нем находящимися? Это противоречие Ньютон разрешить не мог, а гипотез он, по собственному выражению, "не измышлял". Гипотезу выдвинул Гюйгенс. Он предположил, что пространство наполнено неким веществом - эфиром, и построил, опираясь на эфир, волновую теорию света. Она отлично объяснила множество разных оптических явлений и даже предсказала такие, которые потом были открыты, - словом, оказалась хорошей гипотезой. За одним исключением: эфир пришлось снабдить столь противоречивыми свойствами, что разум отказывался верить. С одной стороны, совершенная бесплотность (дабы не мешать движению планет), а с другой - упругость, в тысячи раз превышающая упругость самой лучшей стали (иначе не будет распространяться с нужной скоростью свет). До поры до времени на противоречия закрывали глаза. В конце концов разве природа обязана быть непременно такой, какой нам хочется с точки зрения "здравого смысла"? Мало ли открытий, ему противоречащих, начиная с шарообразности Земли, было сделано наукой? Стоит ли пугаться даже таких взаимоисключающих свойств? Джеймс Клерк Максвелл на основе "эфирной" гипотезы создал теорию электромагнитного поля, столь фундаментальную, что ей подчиняются тысячи ранее непонятных явлений, - так почему бы не предположить, что эфир все-таки существует? Почему бы не предположить, что эфир и есть ньютоновское "абсолютное пространство" и оттого так странен? Если это действительно так, он должен быть абсолютно неподвижен, и скорость света сможет стать тем "спидометром", который даст наблюдателю ответ на вопрос, движется он без ускорения или стоит на месте. В самом деле: поскольку свет - колебание частиц эфира, любое механическое движение обязано складываться с ним и вычитаться, подчиняясь законам механики. Остается лишь поставить точный опыт и ответить, наконец, на "проклятый вопрос". За эту работу в 1880 г. взялся двадцативосьмилетний американец, преподаватель военно-морского училища в Аннаполисе Альберт Майкельсон. Он уже однажды построил прибор для измерения скорости света, намного более точный, чем аппаратура других исследователей. Новая установка должна была обеспечить еще меньшую ошибку - порядка 0,005 процента. В этом случае сложение скоростей света и движения Земли по орбите стало бы заметным. И что же? Майкельсон добился вдесятеро большей точности, чем предполагал, но все-таки не обнаружил такого суммирования. Он был уверен в безупречности опыта, и в статье, напечатанной в "Америкэн Джорнел оф Сайенс", категорически заявил: "Таким образом, доказано, что гипотеза неподвижного эфира неверна".

Ученый мир встретил сообщение без восторга. Гипотеза эфира была слишком хорошо разработана, слишком многое объясняла, чтобы от нее отказываться. Не лучше ли как-то ее подремонтировать? И наиболее убежденные сторонники эфира сделали попытку придать ему еще более невероятные свойства - увязать их с результатами опытов, проделанных американским исследователем.
"Я думал об этих опытах долго и безуспешно, - писал в 1892 г. один из замечательнейших физиков конца столетия Г.А. Лоренц, - и наконец представил только одну возможность для выхода из создавшегося положения". Ученый рассмотрел такую гипотезу: если во время движения через эфир все тела, в том числе и установка, на которой проводил свои эксперименты Майкельсон, несколько сокращаются в направлении движения, то уловить сложение скоростей будет невозможно. Аналогичную мысль высказал и англичанин Д.Ф. Фицджеральд. Французский математик А. Пуанкаре заметил по этому поводу, что если для объяснения одного опыта Майкельсона нужно прибегать к столь искусственным приемам, то что же несут физике новые опыты? Не свидетельствует ли все это о внутренней неустойчивости сооружения, называемого "мировой эфир"?
. А Лоренц тем временем развивал дальше свою любимую теорию электрона, и обнаружил интереснейшие свойства этой единственной тогда известной физикам элементарной частицы: масса ее оказалась переменной, связанной со скоростью, - и выражалась той же формулой, что и теоретическое сокращение размеров. Совпадение или нечто большее?
Эту проблему было суждено решить Эйнштейну. В 1905 г. он опубликовал свою первую работу по теории относительности. Все странные факты, накопившиеся к тому времени в физике, от удивительного постоянства скорости света до не менее удивительного изменения массы электрона получили простое и изящное объяснение.

Прежде всего скорость света объявлялась неизменной величиной, не зависящей от того, движется наблюдатель или находится в покое: в любом случае, даже если лаборатория в ракете будет лететь со скоростью света, прибор Майкельсона неизбежно покажет одну и ту же величину - 300000 километров секунду. "Догоняя свет со скоростью с (скорость света в вакууме), я должен был бы наблюдать этот луч как неподвижное электромагнитное поле, лишь колеблющееся в пространстве, - писал Эйнштейн. - Но, по-видимому, такой картины не бывает. Интуитивно мне с самого начала казалось ясным, что с точки зрения летящего наблюдателя все должно было бы происходить по тем же законам, что и для наблюдателя, покоящегося относительно Земли". Из этого вытекало, что в мире все взаимосвязано: пространство и время (поэтому мы и говорим теперь о пространстве-времени), масса, энергия, движение. Понятия абсолютных пространств, времени и движения полностью ликвидировались. Все движущиеся тела становились равноправными с точки зрения находящихся на них наблюдателей. Абсолютно никакими опытами, проведенными внутри равномерно и прямолинейно движущейся системы, нельзя доказать, движется она или находится в покое. Любой экспериментатор может в этом случае считать себя покоящимся, а всех остальных - движущимися. Результаты решений уравнений, описывающих любые процессы, от этого не изменятся. Но так ли все выглядит на самом деле, как утверждает теория? Физики покажут недоверчивым свои колоссальные ускорители элементарных частиц: размеры и огромная мощность, которая нужна, чтобы привести их в действие, - вот следствия, прямо вытекающие из теории относительности. Чем быстрее летит частица, тем она становится массивнее, а чтобы изменить массу, приходится расходовать соответствующую энергию.

Ну, а время? Формулы Эйнштейна говорят, что сторонний наблюдатель увидит, как время, в котором живет быстро движущаяся частица или экипаж ракетного корабля, протекает медленнее, чем в лаборатории, откуда ведется наблюдение. Этот вывод для многих кажется еще более фантастическим, нежели изменение массы. Но опыты упрямо говорят свое: да, время может изменяться.
В верхних слоях атмосферы, на высоте 10...30 километров, космические лучи сталкиваются с атомами кислорода и азота. При этом образуются элементарные частицы пи-мезоны. Время их жизни в неподвижном относительно лаборатории состоянии - 2,6 10-8 секунды. После этого они распадаются. Это очень хорошо видно, когда искусственно полученный пи-мезон останавливают в поглотителе: от момента остановки до распада проходит именно столько времени. В силу этого родившийся в атмосфере пи-мезон может пролететь (даже со скоростью света!) не более 0,66 километра, - я говорю "может", на мгновение забыв о теории относительности. Однако она существует. И наша элементарная частица вдруг становится долгожителем. Мы видим, как она пролетает целых 16 километров и живет соответственно в десятки раз дольше. Между тем, с точки зрения внутренних свойств пи-мезона, он существует по-прежнему 2,6 10-8 секунды. Для теории относительности нет ничего странного и в том, что космонавт, улетевший в ракете, развивающей почти световую скорость, вернется по часам ракеты через несколько лет, а по часам Земли - через десятилетия.
Есть ли у времени "задний ход"?

Очень многие свойства пространства-времени открыты чисто практически, стали привычными и вполне естественными. Но именно то обстоятельство, что им нет теоретического обоснования, делает изучение их чрезвычайно трудным. Более того, наука лишь в самые последние годы обратила внимание на эти свойства, которые раньше были лишь предметом умственных экспериментов философов. Одно из таких свойств - "стрела" времени, его направленность только в одну сторону. Пространство, как мы хорошо знаем, допускает движение и вперед и назад, а во времени такой эксперимент не удастся, хотя в фантастической литературе путешественников во времени, начиная с героя Уэллса, было предостаточно. "Изменяющийся мир, - пишет известный американский популяризатор науки, математик Мартин Гарднер, - по-видимому, больше напоминает магический зеленый ковер, развертывающийся прямо под ногами и свертывающийся сразу же позади... Но почему магический ковер никогда не развертывается обратно? Каков физический базис этой странной непреодолимой асимметрии времени? По этому поводу среди физиков имеется так же мало согласия, как и среди философов. А ныне, в результате недавних экспериментов, замешательство стало еще больше, чем прежде". Все фундаментальные теории физики, в том числе квантовая механика и теория относительности, допускают в своих формулах подстановку времени как со знаком плюс, так и со знаком минус. Результаты от такой перестановки не меняются, законы описывают то, что может происходить в природе. Может, но не происходит. В нашем макромире "стрела времени" упрямо летит только в одну сторону. Надо сказать, что в физике действуют два рода законов. Одни - динамические, четко подчиняющиеся формулам. В них отношения между причиной и следствием вполне определенны, однозначны. Другие - статистические, их формулы описывают единство и борьбу двух начал: необходимости и случайности. Иными словами, статистические законы описывают события, исход которых можно предвидеть лишь с некоторой долей вероятности, события, которые суть результат, взаимодействия большого числа независимых атомов, молекул, животных или людей. Динамический закон опишет полет снаряда в идеальном математическом пространстве. Статистический закон, дает возможность артиллеристам попасть в цель в реальных условиях, стреляя из данного оружия снарядами данной партии, при данной температуре воздуха и данном ветре. Статистический закон позволяет артиллеристам учесть, что ствол орудия от выстрела к выстрелу изнашивается, что массы снаряда и пороха в каждом патроне хоть немного да отличаются от других, что температура (и зависящая от нее плотность воздуха, мешающего полету снаряда) изменяется по мере подъема на высоту, что ветер дует порывами, - словом, учесть великое множество факторов, влияющих на траекторию снаряда. Совместное их воздействие приводит к тому, что снаряды не попадают в одну и ту же точку, а разлетаются по некоторой площади: каждый стрелок знает, что попасть в дом легче, чем в окно, а в окно - легче, чем в форточку. Вероятность попадания опишет статистический закон и скажет, сколько снарядов нужно истратить, чтобы поразить цель почти наверняка.

А теперь вернемся к "стреле времени". Вообще говоря, можно вообразить такую картину: снаряд взорвался, а потом все молекулы его разлетевшегося вдребезги корпуса вдруг переменят свое движение на обратное и соберутся снова в точке взрыва, воссоздав его, снаряда, первоначальный облик. Вы скажете: "Так не бывает!" Верно. Но почему? Разве при этом будут нарушены законы механики? Нет. Ничто не запрещает молекулам собраться вместе. Ничто, кроме статистических законов: вероятность того, что все молекулы, независимые в своем движении, вдруг станут возвращаться по пройденным путям, столь ничтожна, что мы заранее принимаем ее равной нулю - и оказываемся правы.



<< предыдущая страница   следующая страница >>