birmaga.ru
добавить свой файл

1

В.М. Горбунов

ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ

Учебное пособие

ТОМСК –2010

Тема. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ


Введение. Часть условий при разработке решения всегда неопределенна, поэтому практически все решения принимаются в условиях некоторой неопределенности. Но картина становится принципиально иной тогда, когда неопределенно большинство важнейших исходных данных.

"Неопределенными могут быть как условия выполнения операции, так и сознательные действия противников или других лиц, от которых зависит успех операции. Кроме того, неопределенность в той или другой степени может относиться также к целям (задачам) операции, успех которой не всегда может быть исчерпывающим образом охарактеризован одним единственным числом – показателем эффективности.

При анализе условий реализации проектов наиболее существенными являются следующие виды неопределенности:

  • неопределенность, вызванная нестабильностью экономического законодательства;

  • неопределенность текущей экономической ситуации, условий инвестирования и использования прибыли;

  • неопределенность условий внешнеэкономической деятельности;

  • неопределенность политической ситуации и перспектив социально-экономических изменений в стране или регионе;

  • неопределенность, связанная с отсутствием сведений о динамике технико-экономических показателей, параметрах новой техники и технологии;

  • неопределенность динамики рыночной конъюнктуры, цен, валютных курсов и др.;

  • неопределенность природно-климатических условий, возможность стихийных бедствий;

  • неопределенность, связанная с отсутствием информации о надежности производственно-технологического оборудова­ния и уровне квалификации производственного персонала (частоте аварий и отказов оборудования, нормативном уровне производственного брака);

  • неопределенность целей, интересов и поведения участников реализации проекта;
  • неопределенность, вызванная отсутствием информации о финансовом положении и деловой репутации предприятий-участников (возможность неплатежей, банкротств, срывов договорных обязательств).


http://mandeced.ru/lektsii-po-razrabotke-upravlencheskikh-reshenij/211-vidy-neopredelennosti.html

Разумеется, когда речь идет о неопределенности в каком-то смысле ситуации, то рекомендации, вытекающие из научного исследования, не могут быть столь же четкими и однозначными, как в случаях полной определенности. Однако и при отсутствии полной определенности количественный анализ ситуации все же может принести пользу и помочь при выборе решения. Разработаны специальные математические методы, предназначенные для обоснования решений в условиях неопределенности. В некоторых наиболее простых случаях эти методы дают возможность фактически найти и выбрать оптимальное решение.

В более сложных случаях эти методы доставляют вспомогательный материал, позволяющий глубже разобраться в сложной ситуации и оценить каждое из возможных решений с различных (иногда противоречивых) точек зрения, взвесить его преимущества и недостатки и, в конечном счете, принять решение, если не единственно правильное, то, по крайней мере, до конца продуманное.

Необходимо учитывать, что при выборе решения в условиях неопределенности всегда неизбежен элемент произвола, а значит, и риска. Недостаточность информации всегда опасна, и за нее приходится платить. Однако в условиях сложной ситуации всегда полезно представить варианты решения и их возможные последствия в такой форме, чтобы сделать произвол выбора менее грубым, а риск минимальным".

Как отмечалось, риск может быть снижен применением специальных приемов при разработке и принятии решений финансового менеджмента.

Задачами о принятии решений в условиях неопределенности занимает теория игр и теория статистических решений.


Принятие решений в условиях неопределенности. Элементы теории статистических решений

Предметом рассмотрения данного раздела служат статистические модели принятия решений, трактуемые как статистические игры или игры с Природой при использовании дополнительной статистической информации о её стратегиях. Характерная черта статистической игры – возможность получения информации в результате некоторого статистического эксперимента для оценки распределения вероятностей стратегий природы. Исследование механизма случайного выбора стратегии природой позволяет принять оптимальное решение, которое будет наилучшей стратегией в игре с неантагонистическим противником человека – природой.


В рассмотренных разделах теории игр предполагалось, что оба противника (или больше двух) активно противодействуют друг другу, что оба они достаточно умны, чтобы искать и найти свою оптимальную стратегию, и осторожны, чтобы не отступать от нее. Такое положение дает возможность предсказывать поведение игроков. Неопределенность была лишь в выборе противником конкретной чистой стратегии в каждой отдельной партии.

Но возможен случай, когда неопределенность в игре вызвана не сознательным противодействием противника, а незнанием условий, в которых будет приниматься решение, случайных обстоятельств. Такие игры называются "играми с природой".

Игра человека с природой тоже отражает конфликтную ситуацию, возникающую при столкновении интересов в выборе решения. Но "стихийным силам природы" нельзя приписать разумные действия, направленные против человека и тем более какой-либо "злой умысел". Таким образом, корректнее говорить о конфликтной ситуации, вызванной столкновением интересов человека и неопределенностью действий природы.

Действия природы могут, как наносить ущерб, так и приносить прибыль. Поведение природы можно оценить статистическими методами, определить присущие ей закономерности. В зависимости от степени знания этих закономерностей, определяющих поведение природы, различаются игры с природой в условиях определенности и игры с природой в условиях неопределенности.

Во-первых, поведение природы известно полностью (заданы вероятностями). Во-вторых - действия природы не известны, или изучены частично.

К явлениям природы, влияющим на результат решения, относят не только погодные и сезонные явления (дождь, засуху, урожай, неурожай), но и проявление любых, не зависящих от нас обстоятельств: например, задержки на транспорте.

Поиском решений в таких ситуациях и занимается теория статистических решений.

Человек, играя с природой, стремиться максимизировать свой выигрыш, поэтому, если он осторожный игрок (а теория игр рассматривает именно таких игроков), он должен при выборе своей стратегии руководствоваться тем, что неизвестные или известные ему закономерные действия природы приведут к наименее благоприятным последствиям. Именно поэтому такие игры можно рассматривать как игры двух лиц с нулевой суммой, которые были уже нами рассмотрены.


Формализация задачи происходит следующим образом: у активного игрока (человека) возможные действия по-прежнему называются стратегиями, а возможные действия пассивного игрока (природы) – состояниями или условиями природы.

В качестве первого игрока всегда выступает человек, поэтому в матрице записывается его выигрыш. Так как нас интересует оптимальная стратегия человека и его гарантированный выигрыш, то в игру достаточно определить максиминную стратегию первого игрока и нижнюю цену игры. Определение верхней цены игры имеет смысл, если данная игра повторяется многократно и оптимальная стратегия может быть смешанной.

1.1.Игры с природой в условиях неопределенности.


Если распределение вероятностей будущих состояний природы неизвестно, вся информация о природе сводится к перечню ее возможных состояний. Человек в играх с природой старается действовать осмотрительно, второй игрок (природа, например, покупательский спрос) действует случайно. Таким образом, в сложных структурах каждому допустимому варианту решений Xi вследствие различных внешних условий могут соответствовать различные внешние условия (состояния) Вj и результаты аij решений. Следующий пример иллюстрирует это положение.

Пусть из некоторого материала требуется изготовить изделие, долговечность которого при допустимых затратах невозможно определить. Нагрузки считаются известными. Требуется решить, какие размеры должно иметь изделие из данного материала [Э. Мушик, П. Мюллер. Методы принятия технических решений. М.: Мир, 1990. – 2008 с.].

Варианты решений таковы:

X1 – выбор размеров из соображений максимальной долговечности, т.е. изготовление изделия с минимальными затратами в предположении, что материал будет сохранять свои характеристики в течение длительного времени;

Xn – выбор размеров в предположении минимальной долговечности;

Xi – промежуточные решения.

Условия (состояния), требующие рассмотрения, таковы:


В1 – условия, обеспечивающие максимальную долговечность;

Вm – условия, обеспечивающие минимальную долговечность;

Вj – промежуточные условия.

Под результатом решения аij здесь можно понимать оценку, соответствующую варианту Xi и условиям Вj и характеризующую экономический эффект (прибыль), полезность или надёжность изделия. Семейство решений описывается некоторой матрицей nm, которую называют матрицей решений (условия игры задаются матрицей nm). По аналогии с теорией игр, эту матрицу будем называть также платёжной матрицей.

Таблица. 7 Матрица решений (nm


Условия

Варианты

B1

B2

B3




Bj




Bm

X1

a11

a12

a13




a1j




a1m

X2

a21


a22

a23




a2j




a2m

X3

a31

a32

a33




a3j




a3m

























Xi

ai1

ai2

ai3




aij




aim

























Xn

am1

am2

am3




anj




anm

Конструктор старается выбрать решение с наилучшим результатом, но, так как ему неизвестно, с какими условиями он столкнётся, он вынужден принимать во внимание все оценки аij, соответствующие варианту Xi.

Оценочная функция

Чтобы прийти к однозначному и по возможности наивыгоднейшему варианту решений даже в том случае, когда каким-то вариантам решений Xi могут соответствовать различные условия Вj, можно ввести подходящие оценочные (целевые) функции. При этом матрица решений сводится к одному столбцу. Каждому варианту Xi приписывается, таким образом, некоторый результат аir, характеризующий, в целом, все последствия этого решения. Такой результат мы в дальнейшем будем обозначать тем же символом аir.

Рассмотрим некоторые оценочные функции, которые в данном примере мог бы выбрать конструктор.

Оптимистическая позиция:

(1)


Из матрицы результатов решений выбирается вариант (строка), содержащий в качестве возможного следствия наибольший из всех возможных результатов. Наш конструктор становится на точку зрения азартного игрока. Он делает ставку на то, что выпадет наивыгоднейший случай, и, исходя из этого, выбирает размеры изделия.

Позиция нейтралитета:

(2)

Конструктор исходит из того, что все встречающиеся отклонения результата решения от "среднего" случая допустимы, и выбирает размеры, оптимальные с этой точки зрения.

Имеется ряд критериев, которые используются при выборе оптимальной стратегии. Рассмотрим некоторые из них.

Особые случаи

Схематическое сопоставление всех возможных полезностей aij различных решений в матрице табл. 2 облегчает поначалу их обозрение, не требуя при этом формальной оценки. Эта матрица может быть меньшего объёма (табл.8) и даже выродиться в единственный столбец, если будет представлена полная информация о том, с каким внешним состоянием Вj следует считаться. Это соответствует элементарному сравнению различных технических решений. Матрица решений может, однако, свестись и к единственной строке (см. табл.9). В этом случае мы имеем дело с так называемой фатальной ситуацией принятия решений, когда в силу ограничений технического характера, внешних условий и других причин остаётся единственный вариант, хотя его дальнейшие последствия зависят от внешнего состояния Вj, и поэтому результат решения оказывается неизвестным [Мушик Э., Мюллер П. Методы технических решения: Пер. с нем. – М.: Мир, 1990. – 208 с., ил.].

Таблица. 8. Матрица решений (n2)


Условия

Варианты

B1


B2

X1

a11

a12

X2

a21

a22

X3
















Xi

ai1

ai2










Xn

an1

an2

Таблица.9. Фатальная ситуация в принятии решений

Условия

Варианты

B1

B2

B3





Bj




Bm

X1

a11

a12

a13




a1j




a1n

Случается и так, что некоторый вариант решения, например, оказывается настолько удачным, что для другого варианта Xl из матрицы выполняются неравенства akj≥alj для j=1, …, n. Тогда говорят, что решение Xk доминирует над решением. Решение Xk в этом случае с самого начала оказывается лучшим, а вариант Xl, напротив, с самого начала не представляет далее интереса.

1.2.Классические критерии принятия решений


Максиминный критерий Вальда. Согласно этому критерию игра с природой ведётся как игра с разумным, причём агрессивным противником, делающим всё для того, чтобы помешать нам достигнуть успеха. Оптимальной считается стратегия, при которой гарантируется выигрыш не меньший, чем "нижняя цена игры с природой":

α= (3)

Правило выбора решения в соответствии с критерием Вальда (максиминным критерием):

Правило выбора в соответствии критерием Вальда. Матрица решений (платёжная матрица) дополняется ещё одним столбцом из наименьших результатов аir каждой строки. Выбрать надлежит те варианты, в строках которых стоят наибольшие значения аir этого столбца.


Выбранные таким образом варианты полностью исключают риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Какие бы условия ни встретились, соответствующий результат не может оказаться ниже ZMM. Это свойство заставляет считать максиминный критерий одним из фундаментальных. Поэтому в технических задачах он применяется чаще всего, как сознательно, так и неосознанно. Однако положение об отсутствии риска стоит различных потерь. Продемонстрируем критерий Вальда на примере (см. таблицу 10).

Таблица 10. Пример вариантов решения без учёта риска


B

X

В1

В2

В3

аir



X1

1

10

1

1




X2

1.1

1.1

1.2

1.1

1.1

Выбирая вариант X2, предписываемый критерием Вальда, мы избегаем неудачного значения 1, реализующего в варианте X1 при внешнем состоянии B1, получая вместо него при этом состоянии немного лучший результат 1.1, зато в состоянии В2 теряем выигрыш 10, получая всего только 1.1. Это пример показывает, что в многочисленных практических ситуациях пессимизм минимаксного критерия может оказаться невыгодным


Применение критерия Вальда бывает оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:


  • о возможности появления внешних состояний Вj ничего не известно;

  • приходится считаться с появлением различных внешних состояний Вj;

  • решение реализуется лишь один раз;

  • необходимо исключить какой бы то ни было риск, т.е. ни при каких условиях Вj не допускается получать результат, меньший, чем ZMM.

1.3.Критерий пессимизма-оптимизма Гурвица.


Представляется логичным, что при выборе решения вместо двух крайностей в оценке ситуации придерживаться некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилучшего, благоприятного поведения природы. Такой компромиссный вариант и был предложен Гурвицем. Согласно этому подходу для каждого решения необходимо определить линейную комбинацию min и max выигрыша и взять ту стратегию, для которой эта величина окажется наибольшей, т.е. стараясь занять уравновешенную позицию, Гурвиц предложил критерий (HW), оценочная функция которого находится где-то между точками предельного оптимизма и крайнего пессимизма. Оценочная функция имеет две формы записи:

ZHW =, (5)

где  — “степень пессимизма” ("коэффициент пессимизма", весовой множитель), 0  1.

Правило выбора согласно критерию Гурвица (HW – критерия) формулируется следующим образом:

Матрица решений дополняется столбцом, содержащим средние взвешенные наименьшего и наибольшего результатов каждой строки. Выбираются те варианты Xi, в строках которых стоят наибольшие элементы air этого столбца.

При =1 критерий Гурвица (5) тождественен критерию Вальда, а при  =0 – в критерий крайнего оптимизма (критерий азартного игрока), рекомендующий выбрать ту стратегию, при которой самый большой выигрыш в строке максимален. В технических приложениях правильно выбрать этот множитель бывает так же трудно, как и выбрать критерий. Вряд ли возможно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего весовой множитель =0.5 без возражений принимается в качестве некоторой "средней" точки зрения.


На выбор значения степени пессимизма оказывает влияние мера ответственности: чем серьезнее последствия ошибочных решений, тем больше желание принимающего решение застраховаться, то есть степень пессимизма  ближе к единице.

Рассмотрим применение критерия Гурвица для данных таблицы 1 и степени пессимизма =0.6.

Для стратегии X1 минимальное значение равно 1, а максимальное – 10. Используя формулу (6), вычислим а1r=0.6*1+0.4*10=4.6. Аналогично для второй стратегии. Находим максимальное значение столбца аir. В результате получим таблицу 11.

Таблица 11


B

X

В1

В2

В3

аir



X1

1

10

1

4.6

4.6

X2

1.1

1.1

1.2

1.14



Следовательно, по критерию Гурвица при =0.6 следует выбирать стратегию X1.


Замечание. В литературе используется и такая форма критерия Гурвица:

ZHW =, (6)

где  - “степень оптимизма” ("коэффициент оптимизма ", весовой множитель), 01.

При =0 критерий Гурвица (6) тождественен критерию Вальда, а при =1 совпадает с максиминным решением.

Критерий Гурвица предъявляет к ситуации, в которой принимается решение, следующие требования:


  • о вероятностях появления Вj ничего не известно;

  • с появлением состояний Вj необходимо считаться;

  • реализуется лишь малое количество решений;

  • допускается некоторый риск.

1.4.Критерий Сэвиджа (критерий минимакса риска).


На практике, выбирая одно из возможных решений, часто останавливаются на том, осуществление которого приведет к наименее тяжелым последствиям, если выбор окажется ошибочным. Этот подход к выбору решения математически был сформулирован американским статистиком Сэвиджем (Savage) в 1954 году и получил название принципа Сэвиджа. Он особенно удобен для экономических задач и часто применяется для выбора решений в играх человека с природой.

По принципу Сэвиджа каждое решение характеризуется величиной дополнительных потерь, которые возникают при реализации этого решения, по сравнению с реализацией решения, правильного при данном состоянии природы. Естественно, что правильное решение не влечет за собой никаких дополнительных потерь, и их величина равна нулю.

При выборе решения, наилучшим образом соответствующего различным состояниям природы, следует принимать во внимание только эти дополнительные потери, которые по существу, будут являться следствием ошибок выбора.

Для решения задачи строится так называемая “матрица рисков”, элементы которой показывают, какой убыток понесет игрок (ЛПР) в результате выбора неоптимального варианта решения.


Риском игрока rij при выборе стратегии i в условиях (состояниях) природы j называется разность между максимальным выигрышем, который можно получить в этих условиях и выигрышем, который получит игрок в тех же условиях, применяя стратегию i.

Если бы игрок знал заранее будущее состояние природы j, он выбрал бы стратегию, которой соответствует максимальный элемент в данном столбце: , и тогда риск: .

Критерий Сэвиджа рекомендует в условиях неопределенности выбирать решение, обеспечивающее минимальное значение максимального риска:

ZS=. (6)

Рассмотрим применение критерия Сэвиджа для данных таблицы 10.

Строим матрицу "рисков" для этого находим максимальные значения для каждого столбца таблицы 1. Они равны 1.1; 10 и 1.2 соответственно и находим значения рисков по формуле . Дополняем эту матрицу столбцом наибольших разностей. Выбираем те варианты, в строках которых стоит наименьшее для этого столбца значение. В результате получим таблицу 12.

Таблица 12. Матрица рисков


B

X

В1

В2

В3

аir



X1

0.1

0

0.2

0.2

0.2

X2

0

8.9

0

8.9




Критерий Сэвиджа рекомендует выбрать стратегию X1 .

1.5.Критерий Лапласа.


В ряде случаев представляется правдоподобным следующее рассуждение: поскольку неизвестны будущие состояния природы, постольку можно считать их равновероятными. Этот подход к решению используется в критерии “недостаточного основания” Лапласа.

Для решения задачи для каждого решения подсчитывается математическое ожидание выигрыша (вероятности состояний природы полагаются равными qj = 1/n, j = 1:n), и выбирается то решение, при котором величина этого выигрыша максимальна.

ZL=

.

Гипотеза о равновероятности состояний природы является довольно искусственной, поэтому принципом Лапласа можно пользоваться лишь в ограниченных случаях. В более общем случае следует считать, что состояния природы не равновероятны и использовать для решения критерий Байеса-Лапласа.

1.6.Критерий Байеса-Лапласа.

Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша:


ZBL=.

Этот метод предполагает возможность использования какой-либо предварительной информации о состояниях природы. При этом предполагается как повторяемость состояний природы, так и повторяемость решений, и, прежде всего, наличие достаточно достоверных данных о прошлых состояниях природы. То есть, основываясь на предыдущих наблюдениях прогнозировать будущее состояние природы (статистический принцип).

Возвращаясь к нашей таблице 1 предположим, что q1=0.4, q2=0.2 и q3=0.4. Тогда согласно критерию Байеса-Лапласа таблицу 1 дополняем столбцом математических ожиданий и среди этих значений выбираем максимальное. Получим таблицу 13.

Таблица 13.


B

X

В1

В2

В3

аir



X1

1

10

1

2.8

2.8

X2

1.1

1.1

1.2


1.14




Оптимальным является решение X1.

Критерий Байеса-Лапласа предъявляет к ситуации, в которой принимается решение, следующие требования:

  • вероятности появления состояний Вj известны и не зависят от времени;

  • решение реализуется (теоретически) бесконечно много раз;

  • для малого числа реализаций решения допускается некоторый риск.

При достаточно большом количестве реализаций среднее значение постепенно стабилизируется. Поэтому при полной (бесконечной) реализации какой-либо риск исключён.

Исходная позиция применяющего – критерий оптимистичнее, чем в случае критерия Вальда, однако она предполагает более высокий уровень информированности и достаточно длинные реализации.

Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы проблема выбора решения стала неоднозначной:

Таблица 14. Оптимальные варианты, полученные с помощью различных критериев

Решение

Критерии

Стратегии

Вальда

maxmax

Гурвица,

=0.6

Сэвиджа

Лапласа

Байеса-Лапласа

q1=0.4, q2=0.2, q3=0.4

X1





*

*

*

*

*

X2

*
















Из таблицы 14 видно, что от выбранного критерия (а, в конечном счете - от допущений) зависит и выбор оптимального решения.

Выбор критерия (как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной, чтобы нельзя было получить хотя бы частичной информации относительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы, применяют метод Байеса-Лапласа, либо проводят эксперимент, позволяющий уточнить поведение природы.

Поскольку различные критерии связаны с различными условиями, в которых принимается решение, лучшее всего для сравнительной оценки рекомендации тех или иных критериев получить дополнительную информацию о самой ситуации. В частности, если принимаемое решение относится к сотням машин с одинаковыми параметрами, то рекомендуется применять критерий Байеса-Лапласа. Если же число машин не велико, лучше пользоваться критериями минимакса или Сэвиджа.