birmaga.ru
добавить свой файл

1 2 3
Лекция 1.


Содержание. Вспоминаем физику. Основные представления об электричестве. Ток и напряжение – параметры математических моделей электроприборов. Энергия и мощность – почувствуйте разницу между физиками и электротехниками. 3 великих элемента – резистор, индуктивность и конденсатор, их линейность и нелинейность. Закон Ома. Источники электрической энергии и их возможности. Идеальные модели источников. Составляем принципиальные схемы электроприборов и их математические модели. Законы или правила Кирхгофа. Делители напряжений и токов. Возможные методы упрощения систем уравнений (метод узловых потенциалов и эквивалентного источника). Машинный метод решения уравнений. Знакомство с программой Micro CAP.

Электромагнитное взаимодействие – одно из 4 фундаментальных взаимодействий.

Оно проявляется в виде неких электрических и магнитных (электромагнитных) сил, действующих на частицы, способные их почувствовать. Возможность совершения этими силами работы мы воспринимаем, как электромагнитную энергию. Пространство, в каждой точке которого заряженная частица может ощущать воздействие этих сил, будем называть электромагнитным полем.
И если физика занимается сущностью этой энергии, то электротехника, используя физические знания, занимается созданием устройств, способных решить задачи генерации электромагнитной энергии, её передачу с минимальными потерями и использования для достижения целей потребителя. За 200 лет своего развития электротехника полностью преобразила нашу цивилизацию. Мы уже не можем представить себе жизнь без развитой промышленности, информационных технологий, транспорта и многоэтажных городов, основой которых являются современные технологии и системы жизнеобеспечения, включающие перекачку огромных потоков жидкости, перемещение материалов и их обработку.

В то же время факт наличия или отсутствия электромагнитной энергии можно представить себе как бит информации. И это привело к созданию информационных систем и технологий, начиная от простейших устройств автоматизации до телевидения и интернета. Поэтому дальше мы будем рассматривать два направления электротехники – силовую электротехнику, где требуются значительное количество электромагнитной энергии, и электронику, где нужно обозначить лишь факт её присутствия.


В 2005 году на генерацию электромагнитной энергии в мире было истрачено около 1020 Дж энергоресурсов (в пересчёте на каменный уголь 1010 т, несколько куб.км). Из них, к сожалению, около 70% это невозобновляемое органическое топливо, что ставит задачи как энергосбережения, так и развития альтернативных источников.

Источником электрических и магнитных сил является пространственные совокупности частиц с отрицательным или положительным электрическим зарядом. Зависимость силы взаимодействия между двумя разнополярными частицами с зарядами q1 и q2 от расстояния представляется законом Кулона. Полярность частиц (носителей заряда) определяет направление электрической силы. Однополярные заряды отталкиваются, разнополярные – притягиваются.

( Электрические явления вообще происходят так, как если бы существовали два особых вещества или флюида, действующих друг на друга по закону Кулона, т.е. с силой пропорциональной произведению взаимодействующих количеств и обратно пропорциональной квадрату их расстояния. Эти флюиды для краткости называют положительным и отрицательным электричествами).

Если совокупность заряженных частиц (флюид), являющаяся источником данной силы, не изменяет своей конфигурации, то мы имеем дело с электростатическим полем, в котором действуют электрические силы, FE (x,y,z,t).

Если конфигурация данной совокупности меняется, то в добавление к электрическим силам возникают магнитные силы, FM (x,y,z,t).

И в этом проявляется дуальность электрических и магнитных полей – одно постоянно порождает другое. Поэтому и говорят об электромагнитном поле или взаимодействии..

Электрические и магнитные (электромагнитные) силы могут совершать работу, перемещая (изменяя вектор скорости) заряженные частицы. Эта работа может быть механической – совершённой против механических сил, удерживающих данные частицы, а также электромагнитной – совершённой по изменению конфигурации электромагнитного поля.


Возможность совершения этой работы электромагнитными силами будем называть энергией электромагнитного поля. Таким образом, электромагнитная энергия может превращаться в механическую энергию (движение, тепло, свет и т.п.) – активная энергия, а также оставаться в собственном виде, но с изменением конфигурации поля – реактивная энергия. Соответственно, полная мощность действия электромагнитного поля равна сумме активной мощности и реактивной мощности.

S= Р+ Q

Электрическое поле вызывает смещение заряженных частиц, т.е. электрическая энергия переходит в магнитную энергию. Но магнитная энергия вызывает новое распределение электрического поля, т.е. меняет его энергию. И магнитная энергия таким образом переходит в электрическую. И этот дуальный процесс бесконечен, пока существует реактивная энергия, которая является источником электромагнитных колебаний и, соответственно, электромагнитных волн. Поскольку электромагнитное взаимодействие является дальнодействующим (см. Закон Кулона), то мы можем ощущать эти электромагнитные колебания (волны) на сколь угодно большом удалении от нашего «волнующегося флюида».

Электромагнитные силы, как и все другие физические силы, имеют направление, т.е. их можно представить векторами (векторными функциями). В тоже время можно найти скалярную функцию (x,y,z,t), производная которой по осям координат будет представлять проекцию вектора на эти оси. Значение этой функции в каждой точке пространства называют либо электрическим либо магнитным А потенциалом(от лат. potentia - сила).

Математически FE (x,y,z,t)= grad = (/x + /y + /z),


FM (x,y,z,t)= grad A

(Первым, указавшим на существование такой функции, а именно у сил тяготения, был Лаплас ("Меcanique Celeste"); а самый термин «Потенциальная функция» встречается в сочинении Грина: "An essay on the application of mathematical analysis to the theories of electricity and magnetism",1828 г.

Если мы имеем наэлектризованные тела, то потенциал U в любой точке М пространства равен работе, которую могут произвести электрические силы при переходе единичного заряда из М по произвольному пути в бесконечность.

Более практично применение разности потенциалов в двух точках пространства, занятого электромагнитным полем, или просто напряжения U
= (12). Единицей измерения напряжения и потенциалов в системе СИ установлен Вольт (В).

Если тепловая и электромагнитная энергия по сути аналогичны друг другу в тепловых и электрических процессах, то потенциал аналогичен температуре, также как аналогичны феноменологические термины теплоты и электричества. И как теплота переходит из области высоких температур в область низких температур, так и электричество переходит из области с высоким потенциалом в область с низким потенциалом. Так возникло понятие электрического тока I, как перетока определённого количества электричества Q
=It от высокого потенциала к низкому. Единицей измерения электрического тока в системе СИ установлен Ампер (А).

В дальнейшем, когда появилось понятие зарядов q , как активных участников электромагнитного взаимодействия, то электрический ток стали представлять в виде направленного движения зарядов, которое приводит к изменению потенциальной картины электромагнитного поля. И было принято, что положительные заряды перетекают от высокого потенциала к низкому, а отрицательные в обратную сторону. Но это хорошо понятно в случае более или менее свободного перемещения частиц-носителей заряда, например в вакууме, ионизированных газах или жидкостях. В твёрдых телах, где атомы могут быть жёстко связаны другими типами взаимодействия, смещение зарядов скорее всего передаётся по цепочке. Это видно из аналогии с продольным механическим ударом по ряду плотно прижатых шариков, где передаётся возмущение, а шарики остаются на месте, кроме крайних.


Поэтому скорее всего электрический ток можно представить, как некую меру динамического изменения потенциальной картины электромагнитных сил при смещении (но не движении) частиц с электрическим зарядом.

Как видно, электрический ток – это некий параметр, такой же как скорость. И если скорость можно измерить путём измерения расстояния и времени, необходимого для преодоления этого расстояния, так и электрический ток можно измерить только по косвенным параметрам, например по величине возникающей магнитной силы или по количеству тепла, выделяющегося при механическом смещении заряженных частиц.

Почему эти 2 параметра – напряжение U и ток I, сохранились в практике с давних времён, несмотря на все успехи физиков, нашедших с тех пор электрон и создавших теорию поля?

Ответ простой:

произведение этих параметров определяет электрическую мощность S=UI,

а отношение – свойства материалов среды с электромагнитным полем.

Единицей измерения активной мощности Р в системе СИ установлен Ватт (Вт), который в точности соответствует единице измерения мощности в механических и тепловых системах - ватту (вт). Разница только в размере первой буквы обозначения.

Единицей измерения реактивной мощности Q в системе СИ установлен Вольт-Ампер- реактивный (ВАр).

Единицей измерения полной мощности S в системе СИ установлен Вольт-Ампер (ВА).

Знание электрической мощности в каждой точке пространства, занятого электромагнитным полем, позволяет решить главную утилитарную задачу электротехники: создание необходимого распределения электромагнитной энергии в устройствах по её генерации, распределению и использованию.

Конечно, физиков, интересующихся материей, не устроили эти параметры. Они ввели понятия заряда Q и напряженности электрического поля Е (соответственно, напряженность магнитного поля Н), как отношение электрической (магнитной) силы, действующей на единичный заряд, к величине этого заряда E=FE/q. Но произведение S=ЕхН есть плотность потока энергии. Соответственно, квадраты напряженности поля определяют его энергию.


На основе этих понятий была построена система уравнений классической электродинамики ( Максвелл, 1873 г.)

rot H = D/t + j

rot E = -B/t

div D = 

div B = 0
В нашу задачу не входит подробное изучение этих уравнений, поскольку большинство электротехнических задач не требуют такого мощного математического аппарата. Но следует отметить, что электротехникам с их электрической мощностью приходится постоянно интегрировать по времени, чтобы получить энергию. В то время как физикам, чтобы получить мощность, требуется дифференцировать по времени.

Таким образом, нам необходимы всего 2 параметра - напряжение U и ток I, чтобы представить всю картину мгновенного распределения электромагнитной энергии в каком-либо электрическом устройстве.

Напряжение U между двумя точками физической среды с разными потенциалами 1 и 2 определяет действие электромагнитных сил, которые в силу подвижности заряженных частиц среды приводят к изменению потенциальной картины, то есть к возникновению явлений, которые можно описать параметром электрического тока I. Или, просто говоря, к возникновению электрического тока I между этими двумя точками.

При этом электромагнитные силы совершают механическую работу, создают новую конфигурацию электрического поля и возникает поле магнитных сил (магнитное поле). Другими словами электромагнитная энергия переходит в механическую(тепловую), электрическую и магнитную энергии. И этот переход определяется параметрами физической среды, которые определяют подвижность и взаимодействие частиц, обладающих зарядом, а также распределение электрических и магнитных полей с учётом электрических зарядов и магнитных моментов материальных частиц, составляющих эту среду.

Вспомним закон Ома, который определяет переход электромагнитной энергии в механическую (тепловую) энергию

U=R I , где R= l/S – так называемое сопротивление, и определяемое характеристикой материала (удельное сопротивление), а также геометрическими параметрами пространства l/S , занятого электромагнитным полем между точками 1 и 2 (расстояние между ними и поперечная площадь пространства, по которому проходит электрический ток в случае цилиндрической формы пространства, занятого электромагнитным полем).

Единицей измерения сопротивления R в системе СИ установлен Ом=В/А. Иногда для удобства используют обратную величину сопротивления, так называемую проводимость Y, которая измеряется в Сименсах (См).

Электрическое поле будет определяться тоже аналогичным известным соотношением

I=dU)/dt илиU= U0 + Id t / С, где С- электрическая емкость, которая в случае двух бесконечных пластин представляется соотношением С=/S, то есть диэлектрической проницаемостью , которая определяется свойствами материала, и геометрическими параметрами среды /S (расстояние между пластинами и их площадью).

Единицей измерения электрической ёмкости С в системе СИ установлена Фарада (Ф).

Магнитное поле будет определяться известным законом электромагнитной индукции (закон Фарадея, rot E = -B/t )

U = dФ/dt=d(LI)/dt, где L=N2S/lmиндуктивность, определяемая магнитной проницаемостью , которая зависит от свойств материала, и геометрическими параметрами


следующая страница >>