birmaga.ru
добавить свой файл

1 2 3

Роузвер Н.Т.

ПЕРИГЕЛИЙ МЕРКУРИЯ ОТ ЛЕВЕРЬЕ ДО ЭЙНШТЕЙНА

(М.: Мир, 1985, – фрагменты из книги,

см. полный вариант на сайте http://bourabai.kz/articles/roseveare/)
1.1. Аномалия в движении Меркурия


В то же время над проблемой смещения перигелия вместе с многочисленными астрономами работали и некоторые физики, пытавшиеся выяснить, нельзя ли объяснить смещение с помощью измененного закона тяготения Ньютона. Этим занимались различные учёные, начиная с Вильгельма Вебера, выдающегося специалиста XIX в. в области электродинамики, и кончая молодым швейцарским физиком Вальтером Ритцем, умершим в 1909 г. С началом XX в. возникла и стала развиваться новая физика. Стало очевидным фундаментальное значение теории относительности и её главного раздела — эйнштейновской специальной теории относительности.
6.1. Законы сил с зависимостью от скорости

Выражения законов тяготения, учитывающих зависимость от скорости, содержат члены, которые определяются не только расстоянием между телами, но и скоростью этих тел. Можно считать, что эти члены добавляют небольшую величину к обычной ньютоновой силе, так что смещение перигелия получается даже в случае единственной планеты, обращающейся вокруг Солнца. Законы тяготения, учитывающие зависимость от скорости, сыграли более важную роль в исследовании аномального смещения перигелия Меркурия, чем законы, рассмотренные в гл. 5. Во всяком случае, они привлекли внимание некоторых астрономов, поскольку предсказывали существенное смещение перигелия, что давало надежду полностью объяснить аномалию, присущую движению Меркурия. Другим стимулом их применения послужил быстрый прогресс электродинамики. По мере того как развитие этой науки сопровождалось формулировкой новых законов взаимодействия, исследовались и эквиваленты этих законов в теории тяготения. Чем больших успехов достигала электродинамика, тем более обоснованными казались новые законы тяготения.

Сторонники концепции дальнодействия в электродинамике считали, что взаимодействие между удалёнными электрически заряженными частицами имеет фундаментальный характер, и выражали его в виде некоторого закона изменения силы с расстоянием.


Предполагалось, что действие распространяется со скоростью света, и в баллистических теориях для его передачи были предназначены некоторые гипотетические частицы. Считалось, что эти частицы движутся со скоростью, равной сумме скорости света и собственной скорости их источника. Такое представление противоречит специальной теории относительности, согласно постулату которой скорость распространения света постоянна и не зависит от скорости источника света. Начало этому направлению электродинамики, основанному на концепции дальнодействия, положил Вильгельм Вебер, опубликовавший в 1846 г. фундаментальный закон взаимодействия, названный его именем. Другие такие законы были сформулированы позже Гауссом, Риманом и Клаузиусом, и для каждого из них были созданы эквиваленты в теории тяготения. Исследовалась даже возможность использования в этой теории другого, конкурирующего направления электродинамики максвелловской теории поля. На рубеже столетий Ритц предложил сложный закон для силы взаимодействия электрически заряженных частиц, также исходя из концепции дальнодействия. Исследуя его гравитационный эквивалент, он показал, что такой закон позволяет полностью объяснить смещение перигелия Меркурия. Вскоре Ритц разработал гораздо более общую теорию, применимую для широкого круга явлений. Однако вскоре после её опубликования Ритц скончался, и лишь немногие специалисты проявили интерес к этой теории. На основании доводов астрономического характера она была отвергнута, поскольку включала предположение о переменности скорости света. К этому времени была опубликована и другая теория гравитации, основанная на принципе дальнодействия. Теория Гербера привлекла некоторое внимание, когда оказалось, что предсказываемое ею движение перигелия планеты в точности соответствует результату, следующему из общей теории относительности, однако её никогда не считали серьёзным конкурентом последней.

Начало всем этим теориям было положено в девятнадцатом столетии работой Вильгельма Вебера. Поскольку связь между электродинамическими и гравитационными законами была столь сильной, важно обрисовать развитие электродинамики, прежде чем перейти к приложениям в теории тяготения.

6.2. Основные этапы развития электродинамики

стр. 147

…Итак, вместо взаимодействия частица-частица (действие на расстоянии) стали рассматривать взаимодействия частица-поле и поле-частица. Однако некоторые ставили под сомнение необходимость введения полей и считали, что следует ограничиться использованием "чистых" теорий дальнодействия в их модифицированной форме. Новым решающим понятием стал запаздывающий потенциал, – потенциал, распространяющийся с конечной скоростью. Это понятие, соответствующее идеям Гаусса, высказанным им в переписке с Вебером, было введено Риманом и Лоренцем. Уравнения Максвелла могут быть получены при использовании запаздывающих скалярного и векторного потенциалов и определений Е
и Н через их посредство. Понятие запаздывающего потенциала было обобщено Льенаром (1898 г.) и Вихертом (1900 г.) на случай движущихся частиц, и Льенар вывел соответствующие выражения для Е и Н в 1903 г. Шварцшильд получил формулу для силы взаимодействия двух частиц, соответствующую результатам Льенара. Позже, в 1908 г., Ритц опубликовал приближённый вариант этой формулы пренебрегая членами порядка выше 1/с2. В окончательном виде указанная формула выглядит следующим образом:



Здесь F – нецентральная сила, а действие и противодействие не равны друг другу.
стр. 148

6.3. Применение закона Вебера и других подобных законов в теории тяготения

Выше были рассмотрены пять выражений для закона силы взаимодействия, полученные Гауссом, Вебером, Риманом, Клаузиусом и Ритцем. Все они исследовались в то или иное время как возможная замена ньютонова закона всемирного тяготения в небесной механике. Проследим историю этих исследований, учитывая, что зависимость, отличающаяся от закона обратных квадратов, даёт движение перигелия.

Вначале была предпринята попытка использовать закон Вебера в теории движения планет. В 1864 г. Зеегерс защитил в Гёттингене свою диссертацию, в которой орбитальное движение планет и возмущения рассматривались на основе этого закона [323]. Не исключено, что диссертация была написана под руководством самого Вебера. По мнению Вебера, измерения постоянной с, выполненные им совместно с Кольраушем, свидетельствовали о том, что в отношении движения планет его закон без заметного различия можно принять в качестве закона гравитационного взаимодействия [378]:


"Далее из найденного большого значения константы с вытекает интересное следствие, что такую динамическую составляющую можно также прибавить к силе взаимодействия тяготеющих тел, причём такое добавление не оказывает ни малейшего заметного влияния на движение небесных тел".
6.4. Подход Максвелла

Подход, использованный Максвеллом, был необычным для теории тяготения. В электродинамике его теория была доминирующей, хотя и не настолько, чтобы помешать убежденным сторонникам дальнодействия развивать своё направление, вершина которого была отмечена формулой Льенара–Шварцшильда и теорией Ритца. В то же время применение подхода Максвелла к проблеме тяготения не вызывало особого интереса.
стр. 161

6.5. Теория Ритца

Наиболее совершенная теория, основанная на концепции дальнодействия, была опубликована в начале нашего века молодым швейцарским физиком Вальтером Ритцем [307]. В течение всей жизни он отличался слабым здоровьем и в 1909 г. умер молодым в возрасте 31 года. Он был сокурсником Эйнштейна по Цюриху и большую часть своей работы выполнил в Гёттингене. Полученный Ритцем модифицированный закон тяготения, в отличие от рассмотренных нами выше, при специальных предположениях давал полную величину наблюдаемого смещения перигелия Меркурия. Кроме того, Ритц надеялся разработать общую теорию, охватывающую гравитационные и электромагнитные явления. В 1909 г. он высказал основные принципы построения такой теории, в которой тяготение получалось как проявление остаточного эффекта, обусловленного членами высокого порядка в законе силы самой электродинамической теории. Ритц умер вскоре после опубликования этой статьи, и его идеи не получили дальнейшего развития.

Теория Ритца является баллистической, т. е. действие переносится гипотетическими частицами со скоростью, равной сумме скоростей света и источника. Эта теория [307] даёт фундаментальную силу взаимодействия, определённую уравнением (6.13). Предложенный Ритцем вариант формулы для случая тяготения записан следующим образом:




Постоянная k в формуле (6.21) остаётся неопределённой. Ритц получил следующие значения для смещений перигелиев за столетие: Меркурий – (k+5)·3,6''; Венера – (k+5)·0,7''; Земля – (k+5)·0,3''. Согласование со значением 41'' для Меркурия даёт k= 6,4, и в результате получается, что смещение перигелия за столетие должно составлять 41'' для Меркурия, 8'' для Венеры и 3,4'' для Земли. Как можно показать, отсюда следует движение лунного перигея 0,09'' в столетие, согласующееся с теорией движения Луны Брауна. Ритц полагал, что полученные им значения смещения перигелия для Венеры и Земли слишком велики, хотя они почти совпадали со значениями, найденными в общей теории относительности. Относительно недавно Фокс [121] предложил более общую методику оценки величины k. По его мысли, если расширить теорию Ритца, включив в неё анализ тонкой структуры спектра водородного атома, то отсюда можно получить значение k. Однако предложенный метод не позволяет сразу решить проблему, поскольку нет никаких оснований считать, что постоянные, фигурирующие в законах электродинамики и теории тяготения, должны иметь одни и те же значения. Выражение, определяющее отклонение светового луча в гравитационном поле, не зависит от k, поэтому указанный метод неприменим.

Ритц [308] высказал некоторые идеи о связи гравитации с электродинамикой, но и это не помогло. По его мысли, гравитационные силы должны определяться членами высокого порядка, но соответствующие коэффициенты остались неопределёнными, и со смертью Ритца его теория была оставлена. Ритц считал, что атом состоит из положительных зарядов, обращающихся вокруг центрального отрицательного заряда. В соответствии с этой картиной электростатическое взаимодействие между двумя нейтральными телами отсутствует, но члены, зависящие от скорости и ускорения, не равны нулю. Ритц использовал относительные скорости и классическую кинематику и подверг критике теории Лоренца (теорию, разработанную в 1900 г. и основанную на идеях Цельнера, а также теорию лоренц-инвариантов), которые предсказывали нулевые силы из-за использования абсолютных скоростей и неклассической кинематики. Как нашёл Ганс, из теории Ритца следовали возможность существования гравитационного экрана, а также условие неподвижности положительных зарядов.


Члены второго порядка в формуле Ритца, определяющей силу тяготения, зависят от квадрата скоростей зарядов. Отсюда вытекает возможность температурной зависимости, что, согласно Ритцу, «противоречит наблюдениям». На самом деле было проведено мало опытов для проверки общепринятого предположения о независимости гравитационного взаимодействия от температуры. В 1916 г. П. Е. Шоу из Ноттингема (Великобритания) заявил об открытии температурной зависимости [336]. В качестве теоретического обоснования такой зависимости Шоу ссылался на теорию материи Ми [246], волновую теорию Морозова [249] и на некоторые идеи Бора [33], но не упоминал работы Ритца. Несколько ранее, в 1905 г., Пойнтинг и Филлипс нашли слабое доказательство изменения веса тела с изменением его температуры, а в 1906 г. аналогичные результаты были получены Саузерном. Новизна эксперимента Шоу состояла в том, что он изменял температуру большей массы, находящейся в специальном приборе Бойса, в интервале 20–240°С и получил на основе довольно шаткого доказательства экспериментальную модификацию закона обратных квадратов в виде

F=G(1+αθ)Mm/d2, (6.22)

где θ — температура бóльшей массы М. Измеренное значение температурного коэффициента α равнялось +1,2·10-5 на 1 °С. Вслед за этим на страницах журнала «Нейчур» началась длительная дискуссия по поводу результатов, полученных Шоу [203, 204]. Лармор считал, что несогласие с опытом должно получиться в случае кометы, нагревающейся при приближении к Солнцу. Если бы инертная масса кометы возрастала, то в соответствии с законом сохранения количества движения её скорость должна была уменьшаться, приводя к возмущениям орбитального движения. Шоу отвечал на это, что уравнение (6.22) справедливо лишь в случае, когда нагревается тело большей массы. Другой, более основательный аргумент Лармора состоял в том, что, согласно электродинамической теории, приращение δт равно


δmE/c2=kδT/c2≈10–35δT

и «мало до необнаружимости», а также гораздо меньше значений α в уравнении (6.22). На это Шоу предложил объяснение температурной зависимости на основе волновой теории [337, с. 401]:

«Сила притяжения, зависящая от температуры, обусловлена колебаниями фарадеевских силовых трубок, перемещаемых взад-вперёд молекулами в процессе их колебательного движения. Картина напоминает вытекающую из волновой теории тяготения Чаллиса, согласно которой тела в колеблющейся среде взаимно притягиваются, если их фазы совпадают».

Он получил закон силы, аналогичный выведенному Пойнтингом и Филлипсом, который в случае большой массы М и малой массы т сводился к уравнению (6.22). Линдеман и Бартон опубликовали своё совместное письмо, в котором наряду с критическими замечаниями по адресу некоторых следствий из результатов Шоу содержалась похвальная оценка его эксперимента. Дискуссия окончилась в 1917 г., но вопрос был закрыт в 1922 г., когда Шоу и Дэви повторили эксперимент и обнаружили, что температурная зависимость на самом деле отсутствует. Вину за ошибочный результат 1916 г. они возложили на дефекты в экспериментальной установке.

Чтобы избежать слабой температурной зависимости в своём законе силы взаимодействия, Ритц решил выбрать произвольные постоянные так, чтобы избавиться от соответствующих членов второго порядка. К членам более высоких порядков это возражение не относилось, как писал Ритц [308]: «...при условии, что межатомные скорости велики по сравнению со скоростями теплового движения, что представляется возможным a priori».

Таким образом, Ритц получил фундаментальный закон Ньютона до члена четвёртого порядка, сделав вполне правдоподобное допущение, что масса тела пропорциональна числу вращающихся зарядов, содержащихся в нём. Члены шестого порядка должны были учитывать смещение перигелия Меркурия (и, в какой-то мере, отклонение света звёзд в гравитационном поле Солнца) при подходящих числовых значениях постоянных, хотя такое определение было бы ограниченным из-за необходимости исключить члены второго порядка. Ритц обратился также к рассмотрению членов третьего, пятого и других порядков, считая, что они, возможно, вносят вклад в гравитацию, поскольку и эти члены содержали неопределённые постоянные. Он пришёл к выводу, что «...объяснение аномалии Меркурия и определение гравитационной постоянной путём электромагнитных измерений, несомненно, можно осуществить, исходя из законов электродинамики, когда последние станут известны с более высокой точностью. При любой гипотезе гравитация должна быть, по существу, следствием динамического строения атомов» [308, с. 490].


Ритц умер в 1909 г., оставив лишь скупые наброски своей теории тяготения. Независимо от того, была ли принята эта теория и применялся ли предложенный Ритцом закон силы взаимодействия, её признание зависело от приемлемости исходной электродинамической теории. Последняя же была отвергнута из-за несоответствия данным эксперимента, хотя, как утверждал Фокс [120, 121], окончательные доказательства против теории Ритца были получены лишь в 1960-х годах. Фоксу фактически пришлось модифицировать эту теорию, поскольку из неё следовало, что скорости гипотетических частиц не изменяются при прохождении через материальную среду. Поскольку это противоречило результатам опыта Физо, Фокс ввёл вполне естественное изменение [121, с. 4]:

«Когда световая волна приводит в движение заряды, имеющиеся в среде, они в свою очередь излучают новые волны, центры распространения которых движутся в вакууме со скоростью зарядов среды».

Фоксу удалось таким образом объяснить результаты всех оптических экспериментов, которые, казалось, опровергали теорию Ритца. Для этого он обратился к «...так называемой теореме погашения Эвальда и Озеена, которая показывает, как внешнее электромагнитное возмущение, распространяющееся в вакууме со скоростью света, в веществе полностью сводится на нет, уступая место вторичному возмущению, которое распространяется с соответственно меньшей скоростью» [34, с. 70].



Рис. 6.1. Компоненты двойной звезды, обращающиеся вокруг центра масс.

Эта теорема показывает, что эксперименты по измерению скорости света от конкретного источника неизменно сводятся к измерению скорости распространения света, типичной для некоторой промежуточной материальной среды. Эффекта, предсказываемого теоремой погашения, можно избежать лишь в том случае, когда «частота электромагнитного излучения настолько высока, что электроны атомов не могут следовать за ней». Такое условие выполняется в случае γ-лучей, и Фокс принял результаты выполненных в 1964 г. экспериментов с γ-лучами энергией 6 ГэВ, как наилучший аргумент против теории Ритца и в пользу постулата о постоянстве скорости света относительно движущегося источника.


Теория Ритца рассматривалась как серьёзный конкурент специальной теории относительности. Один из наиболее широко известных аргументов против теории Ритца появился как результат исследований в астрономии. Этот аргумент, основанный на наблюдениях двойных звёзд, был сформулирован в 1913 г. де Ситтером [81], хотя его основная идея была опубликована ранее Комстоком [65].

«Если эмиссионная теория света верна, то скорость света от звезды, находящейся в положении А, будет с+u, а в положении В должна быть с–u. Следовательно, звезда должна наблюдаться в положении А через l/(с+u) секунд после фактического прибытия в эту точку, а в положении В – через l/(с–u) секунд. Вследствие этого видимое время половины оборота, соответствующее перемещению звезды из А в В, должно быть равно Δt–l/(с+u)+l/(с–u)=Δt+2ul/с2, где Δt – действительное время полуопорота по орбите, которую для простоты можно считать круговой. С другой стороны, кажущееся время следующего полуоборота, соответствующее перемещению из В в А, будет составлять Δt–2ul/с2. Для большинства спектроскопических двойных величина 2ul/с2 сравнима с Δt по порядку, а в ряде случаев имеет даже большее значение. Следовательно, если бы эмиссионная теория света была верна, то без поправок за переменную скорость света нам едва ли удалось бы найти, что параметры орбитального движения звёзд соответствуют законам Кеплера, как это наблюдается в действительности. Безусловно, сказанное является очень сильным аргументом против эмиссионной теории» [365, с. 24–25].

Аргументация де Ситтера в том же году встретила возражения со стороны Фрейндлиха [122] и Гутника [144]. Фрейндлих указал, что переменная скорость света в первом приближении должна проявиться в трансформации видимой орбиты в кеплеровский эллипс, у которого линия апсид совпадает с лучом зрения, а периастр направлен в сторону от Земли. Он добавил, что указанный эффект действительно уже наблюдался Барром в 1908 г., хотя и допускал, что возможно иное его объяснение, например космогоническое следствие расположения Солнца вблизи центра Млечного Пути.


Де Ситтер [82] ответил короткой заметкой, повторив свою аргументацию и отметив, что для типичной звезды влияние любой переменности скорости света должно быть очень малым. Однако Фокс, исходя из теоремы погашения, показал, что аргументы де Ситтера не бесспорны. Свет от всех внеземных источников при своём распространении проходит через неоднородную среду: межзвёздный газ, земную атмосферу, стеклянные линзы в лаборатории. Более того, как было показано Отто Струве, большинство тесных двойных звёзд окружены газовыми оболочками, которые не вращаются с компонентами двойной и потому также изменяют скорость светового излучения. Струве и Хуанг [351] выдвинули гипотезу, призванную объяснить эффект Барра. Они предположили, что неравномерное распределение наблюдаемых значений долгот периастров обусловлено искажением кривых лучевой скорости, которое вызвано влиянием потоков выброшенного газа, обращающихся вокруг компонентов двойной. Однако эта гипотеза была не настолько обоснованна, чтобы считаться безусловно общепринятой. В качестве альтернативы оставалось возможным использование теоремы погашения с учётом влияния межзвёздного газа и других факторов, чтобы спасти теорию Ритца.

Таким образом, опровергнуть теорию Ритца оказалось труднее, чем думали в период развития общей теории относительности. Сам Ритц относился критически к применению законов электродинамики, таких, как закон Вебера, в теории тяготения, поскольку они не позволяли полностью объяснить аномальное смещение перигелия Меркурия, а также получить (и даже надеяться на это) значение гравитационной постоянной из электрических или магнитных измерений. Теория Ритца открывала возможность достичь этих целей, и он сам считал её успех «весьма вероятным». Окончательному утверждению общей теории относительности способствовало обнаружение двух других эмпирических эффектов, которые наряду с аномальным смещением перигелия Меркурия стали «классическими» испытаниями справедливости этой теории, а именно красного смещения линий в спектре источника излучения, находящегося в гравитационном поле, и отклонения световых лучей вблизи массивных тел.


Гравитационное красное смещение, согласно теории относительности, представляет собой следствие замедления течения времени в гравитационном поле. Однако его можно получить, используя простую модель фотона. Если фотон массой m переносится из области с потенциалом Р в область пренебрежимо малого потенциала, то он теряет энергию mР. Поскольку, согласно специальной теории относительности, Е= тс2, фотон теряет энергию, равную РЕ/с2, так что относительная потеря составляет dE/E=Р/с2 или относительное красное смещение dν/ν=-Р/с2, что соответствует общей теории относительности. Таким образом, все теории такого рода предсказывают существование красного смещения, и на этом основании невозможно сделать выбор между ними.

Отклонение света, согласно общей теории относительности, вытекает из зависимости скорости света от гравитационного потенциала. Однако такое отклонение получается также и в том случае, если фотон рассматривать как частицу. Ещё в 1801 г. Зольднер представил решение этой задачи, исходя из закона Ньютона, и получил результат, составляющий по­ловину значения 1,75'', следующего из общей теории относительности. Сравнительно недавно в работе [274, с. 544] были даны общее выражение электродинамического закона силы взаимодействия, а также выражения для смещения перигелия и отклонения светового луча, соответствующих этой силе. Сравнение сил, следующих из этого общего выражения и закона Ритца, позволяет найти значения коэффициентов. Таким образом, можно показать, что отклонение светового луча, соответствующее закону Ритца, составляет 3/4 от предсказываемого теорией относительности, или 1,31''. В настоящее время, хотя подтверждение предсказания общей теории относительности нельзя считать совершенно окончательным, просмотр полученных результатов убеждает, что значение 1,31'' никоим образом не имеет преимуществ по сравнению со значением 1,75'' [195]*. Экспедиция Гринвичской обсерватории на Принсипи, состоявшаяся в 1919 г., получила значение 1,61''±0,40'', а австралийская экспедиция 1922 г. (Додвелл и Дэвидсон) получила 1,77''±0,40''. Однако, хотя результаты обеих экспедиций не опровергают теорию Ритца, предпочтение следует отдать общей теории относительности. Другие значения, например полученные экспедицией Гринвичской обсерватории в Собраль (1919 г.), подтвердили справедливость общей теории относительности, а более поздние экспедиции, где производились измерения отклонения света, дали значения больше 1,75''. Таким образом, теория Ритца, в которой использовалась формула взаимодействия, отличающаяся от ньютонова закона обратных квадратов, к 1922 г. была окончательно опровергнута. Однако этот факт остался незамеченным её современниками, поскольку она и раньше пребывала в забвении, возможно, не совсем заслуженно.


следующая страница >>