birmaga.ru
добавить свой файл

1 2 ... 6 7



На правах рукописи


АЛИЕВ Мурад Ризванович
ПРОЦЕССЫ И ПРОТИВОТОЧНЫЕ КОНВЕКТИВНО-МАССООБМЕННЫЕ АППАРАТЫ ДЛЯ ФАЗОСЕЛЕКТИВНОЙ

СОРБЦИИ, ЭКСТРАГИРОВАНИЯ И ТЕПЛОВОЙ ОБРАБОТКИ В СИСТЕМЕ «ТОНКОДИСПЕРСНОЕ ТВЕРДОЕ ТЕЛО – ЖИДКОСТЬ»


Специальность 05.18.12 – Процессы и аппараты пищевых производств

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Краснодар – 2009

Работа выполнена в Дагестанском научно-исследовательском институте пищевой промышленности


Официальные оппоненты:

доктор технических наук, профессор Антипов Сергей Тихонович





доктор технических наук, профессор Дворецкий Станислав Иванович





доктор технических наук, профессор Данилин Серафим Владимирович


Ведущая организация: ГУ Всероссийский научно-исследовательский институт пивоваренной, безалкогольной и винодельческой промышленности РАСХН
Защита состоится 3 ноября 2009 г. на заседании диссертационного совета Д 212.100.03 при Кубанском государственном технологическом университете по адресу: 350072, г. Краснодар, ул. Московская 2.
С диссертацией можно ознакомиться в библиотеке Кубанского государственного технологического университета.
Отзыв на реферат, заверенный печатью учреждения, просим направлять по адресу: 350072, Краснодар, ул. Московская, 2, КубГТУ, Ученому секретарю.
Автореферат разослан «_____»_________________ 2009 г.

Ученый секретарь диссертационного

совета, кандидат технических наук М.В. Жарко


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В современных технологиях производства пищевых продуктов и напитков значительное место занимают процессы физической, химической, физико-химической и биологической обработок. От их эффективности зависят качество, товарный вид, конкурентоспособность и остаточные количества вредных компонентов в конечной продукции.

Процессы сорбции (адсорбционные, ионообменные), экстрагирования (десорбции) и тепловой обработки являются основой технологий обработки и стабилизации многих пищевых жидкостей, в том числе воды, сусла, соков, сиропов, вин, шампанского, коньяков, водок, пива, молока и других напитков для кондиционирования их состава, вкуса, цвета и аромата, придания им стойкости к коллоидным, кристаллическим и биологическим помутнениям, а также для повышения пищевой и экологической безопасности.

Технологические процессы в системе «твердое тело – жидкость» проводятся двумя основными способами: статическим, когда взаимодействие твердых частиц происходит одновременно со всем объемом раствора; и динамическим, который осуществляется в колонке путем фильтрования исходного раствора или экстрагента через слой сорбента или экстрагируемого материала.

Широко используемый на практике статический способ включает приготовление суспензии сорбентов (экстрагируемого материала), подачу ее в реактор, перемешивание в реакторе, длительный отстой, декантацию с осадка, фильтрацию, удаление осадка и очистку реактора. Перемешивание в реакторе проводят до достижения равновесного распределения сорбируемого (извлекаемого) компонента между жидкой и твердой фазами. При кажущейся простоте статический способ – многооперационный и малоинтенсивный. Для него характерны: малая концентрация твердой фазы объеме зоны контакта, низкая величина поверхности контакта фаз в единице объема, большое расстояние между частицами в объеме, большой внешнедиффузионный путь переноса компонента в жидкости между частицами, а также малая интенсивность и эффективность перемешивания – малый удельный объемный расход мощности на перемешивание. Все это является причиной низкой удельной объемной производительности оборудования по сорбируемому (экстрагируемому) компоненту. Следствием является громоздкость линии обработки и малоуправляемость процесса.


Положительным свойством статического способа является возможность применения сорбентов и экстрагируемого материала с малыми размерами dr частиц, следовательно, с большой удельной поверхностью. При этом внутридиффузионный путь переноса компонента в частице мал и мало характерное время внутреннего переноса. Однако, в статическом процессе затруднены операции отделения частиц сорбента (экстрагируемого материала). Время контактирования и отстаивания сорбента в емкостях достигает – до 10 суток.

Во втором, известном динамическом процессе обрабатываемая жидкость (экстрагент) фильтруется через насыпной слой сорбента (экстрагируемого материала) в колонке. Концентрация твердой фазы и поверхность контакта фаз в единице объема здесь выше и способ удобен для регенерации и повторного использования сорбента. Однако размер частиц сорбента (экстрагируемого материала) не может быть слишком мал, и невозможно использовать тонкодисперсную твердую фазу. Ограничена и является низкой скорость фильтрации жидкости через слой. Таким образом, здесь затруднен внешний конвективный перенос компонента в жидкости между частицами сорбента, а время внутреннего переносу компонента в частицах является высоким и часто лимитирует процесс. Кроме того, обязателен контроль и предварительная очистка жидкости от дисперсных частиц (гущи, дрожжей, и др.), при наличии которых быстро забивается колонка и блокируется процесс. По этим причинам динамический способ не находит при обработке пищевых жидкостей столь широкого применения как статический.

Известны схемы с движущимся зернистым адсорбентом, а также со стационарным или циркулирующим псевдоожиженным слоем адсорбента. Скорость движения обрабатываемой жидкости в этих схемах ограничивается скоростью осаждения частиц сорбента в данной среде, которая пропорциональна разности плотностей сорбента и жидкости и квадрату эквивалентного диаметра частиц dr2. Поэтому указанные схемы применяются в основном для крупнодисперсных систем и систем «твердое тело – газ».


Таким образом, далеко не все способы подходят для проведения процесса в системе «тонкодисперсное твердое тело – жидкость».

Основная проблема, возникающая при использовании тонкодисперсных материалов, – это отделение их от обработанной жидкости и уплотнение. Ни один метод осветления от тонкодисперсных взвесей не дает таких высоких и неизменных результатов, как фильтрование. Необходимость этой стадии практически в любом варианте использования тонкодисперсных сорбентов (экстрагируемого материала) привела к созданию намывных фильтров, которые имеют практически все недостатки динамического способа, перечисленные выше. Для всех аппаратов типа намывного фильтра присущи трудоемкие операции сборки фильтра, намывки слоя сорбента, разборки фильтра и его очистки или замены фильтрующих элементов или мембран.

Наиболее эффективным способом интенсификации технологических процессов сорбции и экстрагирования в системах «твердое тело – жидкость» помимо тонкого диспергирования твердой фазы является обеспечение ее противоточного взаимодействия с другой сплошной фазой. Однако, оба эти условия могут достаточно эффективно выполняться только в сложных и громоздких установках многооперационного непрерывного многоступенчатого смешения – разделения фаз.

Поэтому часто на практике используется более простая одноступенчатая линия смешения – декантации фаз. Но осуществляемая в такой линии одна ступень прямоточного взаимодействие фаз дает низкую степень извлечения целевого компонента, что оказывается часто недостаточным. И это при том, что требуется почти полное последующее разделение фаз тонкодисперсной системы для уменьшения потерь компонента. А отвечающие этому условию применяемые в качестве декантаторов фильтры и центрифуги, как правило, сложны по конструкции, а отстойники – громоздки и неэффективны.

Кроме того, линии смешения-декантации, также как статический и динамический способы, принципиально не позволяют проводить фазоселективную обработку суспензий, т.е. обработку жидкой фазы без перемешивания твердой фазы суспензии с частицами сорбента. Такая обработка актуальна в ряде случаев, когда сорбент требуется сохранить в «чистом» виде для регенерации, а также, когда твердая фаза обрабатываемой суспензии блокирует процесс сорбции, а предварительное разделение суспензии либо ненужно (например, для соков с мякотью и т.п.), либо неоправданно (например, для осадков, сточных вод и т.п.).


Для тепловой обработки, в частности, для нагрева (охлаждения) таких дисперсных сред, как биосуспензии, обычно используются сложные аппараты – нагреватели с очищаемой поверхностью теплообмена. В современных технологиях, однако, целесообразна раздельная обработка фаз дисперсного потока при оптимальных для каждой из них условиях. Как известно, технологическая схема такой обработки включает минимум четыре операции: разделение фаз дисперсного потока, нагрев одной из фаз, например, сплошной жидкой фазы, транспортировка твердой фазы и смешение ее с нагретой жидкой фазой. Очевидна громоздкость и неэффективность такой схемы.

Цель исследования. Научное обоснование и разработка процессов для фазоселективной сорбции в системе «тонкодисперсный сорбент – жидкость», экстрагирования в системе «тонкодисперсный материал – экстрагент» и фазоселективной тепловой обработки гетерогенных сред, выявление закономерностей и создание оборудования для их малооперационного проведения.

Задачи исследования. Для достижения поставленной цели были решены следующие задачи:

- разработка способов фазоселективной сорбции, экстрагирования и тепловой обработки в системе “тонкодисперсное твердое тело – жидкость”;

- разработка фазоселективного процесса процессах сорбции в системе “тонкодисперсный сорбент – жидкость” в модуле и в линии «реактор - конвективно-массотеплообменный аппарат»;

- разработка фазоселективного процесса экстрагирования в линии «реактор

- конвективно-массотеплообменный аппарат»;

- разработка фазоселективных процессов тепловой обработки сплошной и дисперсной фаз суспензии в модулях «реактор - конвективно-массотеплообменный аппарат»;

- разработка противоточного конвективно-массотеплообменного аппарата в вариантах исполнения;

- экспериментальное и теоретическое исследование течения жидкости в длинных смежных проницаемых каналах при противоточной и прямоточной схемам (П- и Z-схемах);


- экспериментальное и теоретическое исследование конвективного массотеплообмена в конвективно-массотеплообменном аппарате с учетом массотеплообмена между сплошной и дисперсной фазами потоков;

- разработка методики расчета конвективно-массотеплообменного аппарата;

- разработка методики расчета модулей и линий «реактор - конвективно-массотеплообменныйо аппарат» для фазоселективной сорбции, экстрагирования и тепловой обработки в системе “тонкодисперсное твердое тело – жидкость”.

Научная концепция работы. Основой создания ряда новых ресурсосберегающих процессов и конкурентоспособной аппаратуры для систем «тонкодисперсная твердая фаза – жидкость» является научно обоснованное применение метода взаимодействия потоков концентрированной суспензии тонкодисперсных твердых частиц и обрабатываемой жидкости (суспензии), разделенных проницаемой для жидкой фазы перегородкой, при интенсивном конвективном массообмене между потоками взамен традиционного проведения непосредственного взаимодействия твердых частиц и жидкости. Малооперационная реализация такого взаимодействия в одном массообменном аппарате позволяет создавать эффективные фазоселективные процессы сорбции, экстрагирования и тепловой обработки.

Фазоселективность этих процессов заключается в следующем. В процессе сорбционной обработки потоки обрабатываемой суспензии (жидкости) и суспензии сорбента обмениваются только жидкими фазами, т.е. обработке сорбентом подвергается селективно только жидкая фаза исходного потока. Аналогично в процессе экстрагирования в поток экстрагента попадает только жидкая фаза суспендированного экстрагируемого материала. В процессах тепловой обработки появляется возможность проводить селективную тепловую обработку жидкой фазы и селективную тепловую обработку твердой фазы исходной суспензии.

Изложенная концепция открывает научное направление – создание малооперационных фазоселективных технологических процессов в системе «тонкодисперсное твердое тело – жидкость» и нового класса аппаратов типа КМОА. Данный класс аппаратов занимает промежуточное положение между фильтрами и традиционными противоточными массообменными аппаратами для систем «дисперсная фаза – жидкость» (аппаратами с движущимся или взвешенным слоем, насыпным неподвижным слоем и т.п.).


Методология исследований базируется на применении математического и физического моделирования для решения поставленных задач, внедрении в производство ресурсосберегающих процессов и конкурентоспособной промышленной аппаратуры, защищенными охранными документами.

Научная новизна работы. Предложен противоточный конвективно-массообменный аппарат (КМОА) в двухканальном и трехканальном вариантах исполнения для проведения фазоселективных процессов сорбции, экстрагирования и тепловой обработки в технологически значимой системе «тонкодисперсный материал – жидкость».

Научно обоснованы предложенные способы и аппаратурные модули «реактор – конвективно-массообменный аппарат» для проведения сорбции, экстрагирования и тепловой обработки в системе «тонкодисперсный материал – жидкость».

Развиты научные представления о течении потоков в двух и трех смежных каналах с проницаемыми стенками.

Получены продольные распределения скоростей, давлений, порозностей и концентраций для течения жидкостей и суспензий в системе двух и трех смежных каналов с проницаемыми стенками.

Установлено, что в системе трех смежных каналов распределения скоростей фильтрации и давлений вдоль каналов более равномерны, чем в системе двух каналов.

На основании экспериментальных исследований и разработанной математической модели, учитывающей течение потоков в смежных каналах при наличии поперечного перетока через разделяющую их проницаемую перегородку, научно обоснована эффективность конвективно-массообменного аппарата.

Развиты представления о физической картине процессов массо- и теплообмена в конвективно-массообменном аппарате с использованием разработанной математической модели, учитывающей массо- и теплообмен между сплошной и дисперсной фазами потоков, приведена методика расчета КМОА.

Обнаружено, что эффективность конвективного массопереноса между потоками в смежных проницаемых каналах тем больше, чем больше продольный градиент скорости фильтрации и меньше отношение объема проницаемой перегородки к объему пульса.


Установлено, что при течении жидкости в смежных проницаемых каналах продольный градиент скорости фильтрации возрастает при увеличении входного числа Рейнольдса, уменьшении безразмерного эффективного сопротивления проницаемой перегородки и увеличении отношения длины канала к его эквивалентному диаметру.

Установлено, что на процесс массообмена в КМОА влияют порозность дисперсных сред, константа межфазного равновесия, отношение G21=g2/g1 объемных расходов потоков в каналах КМОА, отношение TRK=tR1/tK1 времени tR1 пребывания потока в первом канале КМОА к характерному времени tK1 конвективного массообмена между каналами, отношение T0=tR2/t2 времени tR2 пребывания потока во втором канале КМОА к характерному времени t2 межфазной массоотдачи. Показано, что эффективность КМОА тем больше, чем больше значения величин TRK и T0.

Разработаны математические модели, включая математические модели подсистем следующих новых технических решений:

- модуль «реактор – конвективно-массообменный аппарат» для фазоселективной сорбции, экстрагирования и тепловой обработки;

- линия «реактор – конвективно-массообменный аппарат» для фазоселективной сорбции, экстрагирования и тепловой обработки.

Определено, что в сорбционном модуле «реактор – КМОА» при заданной степени очистки жидкости от компонента, больший объем жидкости можно обработать при больших значениях степени массообмена, при меньших значениях порозности суспензии, при меньших значениях степени в изотерме (по Фрейндлиху), при меньших значениях коэффициента распределения и при больших значениях времени пребывания в реакторе.


Установлено, что процессы сорбции и экстрагирования в линии «реактор – КМОА» обладает широким диапазоном режимов, при которых они более эффективны чем в известной линии «реактор – декантатор».

Практическая значимость работы:

- разработаны технологические схемы фазоселективной сорбции в модуле и линии реактор-массообменник и конструкции противоточного конвективно-массообменного аппарата, обеспечивающие повышение эффективности сорбции в системе “тонкодисперсный сорбент – жидкость” (Пат. № 2298425);

- разработана технологическая схема линии реактор-массообменник для процесса экстрагирования тонкодисперсного материала, который обладает широким диапазоном режимов, при которых он более эффективен, чем в известной линии «реактор – декантатор» (Пат. № 2344866);

- разработана технологическая схема модуля реактор-массообменник для малооперационного процесса фазоселективной тепловой обработки сплошной и дисперсной фаз суспензии;

- разработанные противоточный конвективно-массообменный аппарат и модуль внедрены в производство (ПАО “Дагагровинпром”) для сорбции красящих веществ из виноматериала активным углем;

- разработанный противоточный конвективно-массообменный аппарат внедрен в производство (ПАО “Дагагровинпром”) для извлечения виннокислых соединений из дрожжевой барды, для извлечения концентрата из замороженной пульпы винопродукта, для извлечения сусла и виноматериала из гущевых осадков виноделия. Общий экономический эффект составил 77000 руб. (в ценах 1999 года);

- разработанные процесс и аппаратурный модуль «реактор – КМОА» для сорбционного извлечения полифенолов из пива нерастворимым ПВПП испытан и принят к использованию на ООО Махачкалинский пивоваренный завод «Порт-Петровск».

Достоверность и надежность результатов. Достоверность полученных экспериментальных данных по измерениям распределений давлений в каналах КМОА, концентраций растворенного компонента и других показателей в процессе массообмена обеспечивалась применением аттестованных измерительных средств и апробированных методик измерения и обработки данных, анализом точности измерений, повторяемостью результатов.


Достоверность теоретических результатов гарантируется применением современных методов математического моделирования, базирующихся на общих законах сохранения, использованием теории подобия, полученных аналитических и численных методов решения, обоснованностью используемых допущений.

Достоверность полученных результатов подтверждается путем сравнения полученных теоретических результатов с данными экспериментов и промышленными испытаниями.

Апробация работы. Результаты работы докладывались (с опубликованием тезисов) на 13 научных конференциях.

Диссертационная работа связана с научными исследованиями ДагНИИПП по госбюджетным темам «Разработка технологии производства вин с сопряжением процессов обработки дисперсными материалами и фильтрации», «Разработка малооперационного адсорбционно-фильтрационного процесса для модульной установки обработки и стабилизации вин», по Подпрограмме Государственной научно-технической программы России «Принципы и методы создания технологий химических веществ и материалов» по теме «Новый принцип создания малооперационных процессов и технологий для систем “твердая тонкодисперсная фаза - жидкость”» и по гранту Российского фонда фундаментальных исследований (РФФИ) №05-08-18238 «Исследование и разработка интенсивного малооперационного энерго- ресурсосберегающего противоточного процесса сорбционной обработки жидкости или пульпы тонкодисперсным сорбентом».

Публикации результатов исследований. По результатам исследований опубликовано 64 работы, из них 1 монография, 46 статей в журналах, рекомендуемых ВАК, 15 тезисов докладов на конференциях и получено 2 патента РФ на изобретения.

Структура и объем работы. Диссертация состоит из введения, девяти глав, заключения, списка литературы, насчитывающего 322 ссылки и трех приложений. Работа изложена на 322 страницах машинописного текста, включая 103 рисунка и 4 таблицы.


следующая страница >>